In this paper, we take into account the coupled stochastic Korteweg–De Vries (CSKdV) equations in the Itô sense. Using the mapping method, new trigonometric, rational, hyperbolic, and elliptic stochastic solutions are obtained. These obtained solutions can be applied to the analysis of a wide variety of crucial physical phenomena because the coupled KdV equations have important applications in various fields of physics and engineering. Also, it is used in the design of optical fiber communication systems, which transmit information using soliton-like waves. The dynamic performance of the various obtained solutions are depicted using 3D and 2D curves in order to interpret the effects of multiplicative noise. We conclude that multiplicative noise influences the behavior of the solutions of CSKdV equations and stabilizes them.
On the Dynamical Behavior of Solitary Waves for Coupled Stochastic Korteweg–De Vries Equations
Clemente Cesarano
2023-01-01
Abstract
In this paper, we take into account the coupled stochastic Korteweg–De Vries (CSKdV) equations in the Itô sense. Using the mapping method, new trigonometric, rational, hyperbolic, and elliptic stochastic solutions are obtained. These obtained solutions can be applied to the analysis of a wide variety of crucial physical phenomena because the coupled KdV equations have important applications in various fields of physics and engineering. Also, it is used in the design of optical fiber communication systems, which transmit information using soliton-like waves. The dynamic performance of the various obtained solutions are depicted using 3D and 2D curves in order to interpret the effects of multiplicative noise. We conclude that multiplicative noise influences the behavior of the solutions of CSKdV equations and stabilizes them.File | Dimensione | Formato | |
---|---|---|---|
mathematics-11-03506.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Dominio pubblico
Dimensione
1.63 MB
Formato
Adobe PDF
|
1.63 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.