Given a directed graph G, an edge is a strong bridge if its removal increases the number of strongly connected components of G. Similarly, we say that a vertex is a strong articulation point if its removal increases the number of strongly connected components of G. In this paper, we present linear-time algorithms for computing all the strong bridges and all the strong articulation points of directed graphs, solving an open problem posed in Beldiceanu et al. (2005).

Finding strong bridges and strong articulation points in linear time.

LAURA, Luigi;
2012-01-01

Abstract

Given a directed graph G, an edge is a strong bridge if its removal increases the number of strongly connected components of G. Similarly, we say that a vertex is a strong articulation point if its removal increases the number of strongly connected components of G. In this paper, we present linear-time algorithms for computing all the strong bridges and all the strong articulation points of directed graphs, solving an open problem posed in Beldiceanu et al. (2005).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14086/375
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact