We analyze in two dimensions the mechanical behavior of materials with granular microstructures modeled by means of a variationally formulated strain-gradient continuum approach based on micromechanics and show that it can capture microstructural-size-dependent effects. Tension-compression asymmetry of grain-assembly interactions, as well as microscale damage, is taken into account and the continuum scale is linked to the grain-scale mechanisms. Numerical results are provided for finite deformations and substantiate previous research. As expected, results show interesting size-dependent effects that are typical of strain-gradient modeling.

Two-dimensional analysis of size effects in strain gradient granular solids with damage-induced anisotropy evolution

Placidi L
2021-01-01

Abstract

We analyze in two dimensions the mechanical behavior of materials with granular microstructures modeled by means of a variationally formulated strain-gradient continuum approach based on micromechanics and show that it can capture microstructural-size-dependent effects. Tension-compression asymmetry of grain-assembly interactions, as well as microscale damage, is taken into account and the continuum scale is linked to the grain-scale mechanisms. Numerical results are provided for finite deformations and substantiate previous research. As expected, results show interesting size-dependent effects that are typical of strain-gradient modeling.
File in questo prodotto:
File Dimensione Formato  
2021_Maksimovetal_JEM.pdf

non disponibili

Dimensione 2.72 MB
Formato Adobe PDF
2.72 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14086/2324
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact