Strain gradient continuum damage modelling has been applied to quasistatic brittle fracture within an approach based on a maximum energy-release rate principle. The model was implemented numerically, making use of the FEniCS open-source library. The considered model introduces non-locality by taking into account the strain gradient in the deformation energy. This allows for stable computations of crack propagation in differently notched samples. The model can take wedges into account, so that fracture onset can occur at wedges. Owing to the absence of a damage gradient term in the dissipated energy, the normal part of the damage gradient is not constrained on boundaries. Thus, non-orthogonal and non-parallel intersections between cracks and boundaries can be observed.
Computation of brittle fracture propagation in strain gradient materials by the FEniCS library
Placidi L;
2021-01-01
Abstract
Strain gradient continuum damage modelling has been applied to quasistatic brittle fracture within an approach based on a maximum energy-release rate principle. The model was implemented numerically, making use of the FEniCS open-source library. The considered model introduces non-locality by taking into account the strain gradient in the deformation energy. This allows for stable computations of crack propagation in differently notched samples. The model can take wedges into account, so that fracture onset can occur at wedges. Owing to the absence of a damage gradient term in the dissipated energy, the normal part of the damage gradient is not constrained on boundaries. Thus, non-orthogonal and non-parallel intersections between cracks and boundaries can be observed.File | Dimensione | Formato | |
---|---|---|---|
2021_Barchiesi_et_al_fenics_MMS.pdf
non disponibili
Dimensione
2.35 MB
Formato
Adobe PDF
|
2.35 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.