In the present contribution, we address the following problem: is it possible to find a microstructure producing, at the macro-level and under loads of the same order of magnitude, a beam which can be both extensible and flexible? Using an asymptotic expansion and rescaling suitably the involved stiffnesses, we prove that a pantographic microstructure does induce, at the macro-level, the aforementioned desired mechanical behavior. Thus, in an analogous fashion to that of variational asymptotic methods, and following a mathematical approach resembling that used by Piola, we have employed asymptotic expansions of kinematic descriptors directly into the postulated energy functional and a heuristic homogenization procedure is presented and applied to the cases of Euler and pantographic beams.
Heuristic Homogenization of Euler and Pantographic Beams
Placidi L;
2020-01-01
Abstract
In the present contribution, we address the following problem: is it possible to find a microstructure producing, at the macro-level and under loads of the same order of magnitude, a beam which can be both extensible and flexible? Using an asymptotic expansion and rescaling suitably the involved stiffnesses, we prove that a pantographic microstructure does induce, at the macro-level, the aforementioned desired mechanical behavior. Thus, in an analogous fashion to that of variational asymptotic methods, and following a mathematical approach resembling that used by Piola, we have employed asymptotic expansions of kinematic descriptors directly into the postulated energy functional and a heuristic homogenization procedure is presented and applied to the cases of Euler and pantographic beams.File | Dimensione | Formato | |
---|---|---|---|
2020_placidietal_CISM.pdf
non disponibili
Dimensione
10.1 MB
Formato
Adobe PDF
|
10.1 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.