We use the semi-inverse method to solve a St. Venant and an Almansi-Michell problem for a prismatic body made of a homogeneous and isotropic elastic material that is stress free in the reference configuration. In the St. Venant problem, only the end faces of the prismatic body are loaded by a set of self-equilibrated forces. In the Almansi-Michell problem self equilibrated surface tractions are also applied on the mantle of the body. The St. Venant problem is also analyzed for the following two cases: (i) the reference configuration is subjected to a hydrostatic pressure, and (ii) stress-strain relations contain terms that are quadratic in displacement gradients. The Signorini method is also used to analyze the St. Venant problem. Both for the St. Venant and the Almansi-Michell problems, the solution of the three dimensional problem is reduced to that of solving a sequence of two dimensional problems. For the St. Venant problem involving a second-order elastic material, the first order deformation is assumed to be an infinitesimal twist. In the solution of the Almansi-Michell problem, surface tractions on the mantle of the cylindrical body are expressed as a polynomial in the axial coordinate. When solving the problem by the semi-inverse method, displacements are also expressed as a polynomial in the axial coordinate. An explicit solution is obtained for a hollow circular cylindrical body with surface tractions on the mantle given by an affine function of the axial coordinate

### Solution of Saint-Venant and Almansi-Michell Problem. Master of Science in Engineering Mechanics at Virginia Polytechnic Institute and State University

#### Abstract

We use the semi-inverse method to solve a St. Venant and an Almansi-Michell problem for a prismatic body made of a homogeneous and isotropic elastic material that is stress free in the reference configuration. In the St. Venant problem, only the end faces of the prismatic body are loaded by a set of self-equilibrated forces. In the Almansi-Michell problem self equilibrated surface tractions are also applied on the mantle of the body. The St. Venant problem is also analyzed for the following two cases: (i) the reference configuration is subjected to a hydrostatic pressure, and (ii) stress-strain relations contain terms that are quadratic in displacement gradients. The Signorini method is also used to analyze the St. Venant problem. Both for the St. Venant and the Almansi-Michell problems, the solution of the three dimensional problem is reduced to that of solving a sequence of two dimensional problems. For the St. Venant problem involving a second-order elastic material, the first order deformation is assumed to be an infinitesimal twist. In the solution of the Almansi-Michell problem, surface tractions on the mantle of the cylindrical body are expressed as a polynomial in the axial coordinate. When solving the problem by the semi-inverse method, displacements are also expressed as a polynomial in the axial coordinate. An explicit solution is obtained for a hollow circular cylindrical body with surface tractions on the mantle given by an affine function of the axial coordinate
##### Scheda breve Scheda completa Scheda completa (DC)
2002
Polynomial hypothesis
Saint-Venant's Problem
Non Linear Elasticity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/20.500.14086/2174`
##### Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

• ND