In this thesis we present a general theory able to comprehend important phenomena related to the dynamics of a polycrystalline material such as the ice of an ice sheet. The theoretical framework is founded upon the Theory of Mixtures with Continuous Diversity, for which the second law of thermodynamics is exploited to get a complete set of restrictions on the constitutive equations. The main goal of such an exploitation is to provide a theoretical tool to investigate the effects of the micostructure on the mechanical behaviour of polycrystalline materials. An explicit anisotropic constitutive law is given for the stretching tensor of an incompressible polycrystalline material in terms of its deviatoric stress tensor and of the distribution (Orientation Distribution Function or ODF) of the lattice orientations of the crystallites belonging to the polycrystal. Such a law is able to comprehend the mechanical response for any state of deformation, it is objective and its validity is checked by some remarkable examples. The evolution of the anisotropy is modelled with the aid of the evolution of the ODF, and it is not postulated ab initio. The balance of mass, as it is given in the form of the presented mixture with continuous diversity, provides such an evolution equation, that contains two constitutive functions. They are able to model the grain rotation and the Grain Boundary Migation (GBM) and recrystallization, respectively. We provide also a proposal for the explicit form of these two functions. From the balance of mass in the form of the presented mixture with continuous diversity, we have also derived a general evolution equation of the distribution of grain sizes. Two constitutive functions are present in this new equation. They are able to model the effects of grain growth and polygonization, respectively, on the evolution of the distribution of grain sizes. Even in this case, we give our proposal for the explicit form of these two functions. Results about the evolution of the dislocation density is also given.

Thermodynamically Consistent Formulation of Induced Anisotropy in Polar Ice Accounting for Grain Rotation, Grain-size Evolution and Recrystallization. PhD thesis, TU Darmstadt

Placidi L
2004-01-01

Abstract

In this thesis we present a general theory able to comprehend important phenomena related to the dynamics of a polycrystalline material such as the ice of an ice sheet. The theoretical framework is founded upon the Theory of Mixtures with Continuous Diversity, for which the second law of thermodynamics is exploited to get a complete set of restrictions on the constitutive equations. The main goal of such an exploitation is to provide a theoretical tool to investigate the effects of the micostructure on the mechanical behaviour of polycrystalline materials. An explicit anisotropic constitutive law is given for the stretching tensor of an incompressible polycrystalline material in terms of its deviatoric stress tensor and of the distribution (Orientation Distribution Function or ODF) of the lattice orientations of the crystallites belonging to the polycrystal. Such a law is able to comprehend the mechanical response for any state of deformation, it is objective and its validity is checked by some remarkable examples. The evolution of the anisotropy is modelled with the aid of the evolution of the ODF, and it is not postulated ab initio. The balance of mass, as it is given in the form of the presented mixture with continuous diversity, provides such an evolution equation, that contains two constitutive functions. They are able to model the grain rotation and the Grain Boundary Migation (GBM) and recrystallization, respectively. We provide also a proposal for the explicit form of these two functions. From the balance of mass in the form of the presented mixture with continuous diversity, we have also derived a general evolution equation of the distribution of grain sizes. Two constitutive functions are present in this new equation. They are able to model the effects of grain growth and polygonization, respectively, on the evolution of the distribution of grain sizes. Even in this case, we give our proposal for the explicit form of these two functions. Results about the evolution of the dislocation density is also given.
2004
In dieser Arbeit wird eine Theorie vorgestellt, welche Phänomene in Verbindung mit der Dynamik polykristalliner Materialien, erklärt wie zum Beispiel das thermomechanische Verhalten von Eis in Inlandeisschilden. Basierend auf der Mischungstheorie mit Kontinuierlcher Diversität werden mit Hilfe des zweiten Hauptsatzes der Thermodynamik Einschränkungen der möglichen konstitutiven Gleichungen hergeleitet uns so ein theoretisches Verfahren entwickelt, das in der Lage ist, den Einflußder Mikrostruktur auf die mechanischen Eigenschaften polykristallinen Materials zu untersuchen. Es wird ein anisotropes Konstitutivgesetz des Streckungstensors eines inkompressiblen, polykristallinen Materials in Abhänigkeit des deviatorischen Spannungstensors und der Gitterorientierungen (mit Hilfe des Orientierungsverteilungsfunktion (ODF) der Kristallite) des Polykristalls vorgestellt. Mittels eines solchen Gesetzes ist es möglich mechanische Reaktionen für jeden Deformationszustand zu verstehen. Das gesetz ist objektiv, seine Gültigkeit wird durch einige Beispiele belegt. Die Entwicklung der Anisotropie wird durch den Verlauf der ODF modelliert, also nicht ab initio vorgegeben. Die Massenbilanz der Mischung (mit Kontinuierlches Diversität) ergibt eine Funktion mit zwei Konstitutivegleichungen, die Rotation der Körner und die Korngrenzen Migration (GBM) bzw. den Rekristallationsvorgang beschreiben. Es wird eine explizit Formulierung der Gleichungen vorgeschlagen. Aus der Massenbilanz erhält man außerdem eine allgemeine Evolutionsgleichung für die Korn größe. Hieraus ergeben sich zwei weitere Konstitutivgleichangen, die den Effekt des Korn wachstums bzw. der Polygonisation auf die Entwicklung der Korn größenverteilung beschreiben. Auch für diese Gleichungen werden explizite Formulierungen vorgeschlagen. Desweiteren werden Ergebnisse f ur die Entwicklung der Versetzungschichte vorgestellt.
Grain Boundary Migration
Lagrange Multipliers
Ice cores
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14086/2173
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact