The stochastic fractional-space Korteweg–de Vries equation (SFSKdVE) in the sense of the M-truncated derivative is examined in this article. In the Itô sense, the SFSKdVE is forced by multiplicative white noise. To produce new trigonometric, hyperbolic, rational, and elliptic stochastic fractional solutions, the tanh–coth and Jacobi elliptic function methods are used. The obtained solutions are useful in interpreting certain fascinating physical phenomena because the KdV equation is essential for understanding the behavior of waves in shallow water. To demonstrate how the multiplicative noise and the M-truncated derivative impact the precise solutions of the SFSKdVE, different 3D and 2D graphical representations are plotted.
Solitary Wave Solutions for the Stochastic Fractional-Space KdV in the Sense of the M-Truncated Derivative
Cesarano C;
2022-01-01
Abstract
The stochastic fractional-space Korteweg–de Vries equation (SFSKdVE) in the sense of the M-truncated derivative is examined in this article. In the Itô sense, the SFSKdVE is forced by multiplicative white noise. To produce new trigonometric, hyperbolic, rational, and elliptic stochastic fractional solutions, the tanh–coth and Jacobi elliptic function methods are used. The obtained solutions are useful in interpreting certain fascinating physical phenomena because the KdV equation is essential for understanding the behavior of waves in shallow water. To demonstrate how the multiplicative noise and the M-truncated derivative impact the precise solutions of the SFSKdVE, different 3D and 2D graphical representations are plotted.File | Dimensione | Formato | |
---|---|---|---|
mathematics-10-04792.pdf
non disponibili
Dimensione
993.05 kB
Formato
Adobe PDF
|
993.05 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.