In this article, by using some algebraic inequalities, nabla Hölder inequalities, and nabla Jensen’s inequalities on timescales, we proved some new nabla Hilbert-type dynamic inequalities on timescales. These inequalities extend some known dynamic inequalities on timescales and unify some continuous inequalities and their corresponding discrete analogues. Symmetry plays an essential role in determining the correct methods to solve dynamic inequalities.
On Some Important Dynamic Inequalities of Hardy–Hilbert-Type on Timescales
Cesarano C;
2022-01-01
Abstract
In this article, by using some algebraic inequalities, nabla Hölder inequalities, and nabla Jensen’s inequalities on timescales, we proved some new nabla Hilbert-type dynamic inequalities on timescales. These inequalities extend some known dynamic inequalities on timescales and unify some continuous inequalities and their corresponding discrete analogues. Symmetry plays an essential role in determining the correct methods to solve dynamic inequalities.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
symmetry-14-01421.pdf
non disponibili
Dimensione
313.9 kB
Formato
Adobe PDF
|
313.9 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.