The theory of convexity has a rich and paramount history and has been the interest of intense research for longer than a century in mathematics. It has not just fascinating and profound outcomes in different branches of engineering and mathematical sciences, it also has plenty of uses because of its geometrical interpretation and definition. It also provides numerical quadrature rules and tools for researchers to tackle and solve a wide class of related and unrelated problems. The main focus of this paper is to introduce and explore the concept of a new family of convex functions namely generalized exponential type m-convex functions. Further, to upgrade its numerical significance, we present some of its algebraic properties. Using the newly introduced definition, we investigate the novel version of Hermite–Hadamard type integral inequality. Furthermore, we establish some integral identities, and employing these identities, we present several new Hermite–Hadamard (H–H) type integral inequalities for generalized exponential type m-convex functions. These new results yield some generalizations of the prior results in the literature.

Novel Analysis of Hermite–Hadamard Type Integral Inequalities via Generalized Exponential Type m-Convex Functions

Cesarano C;
2022-01-01

Abstract

The theory of convexity has a rich and paramount history and has been the interest of intense research for longer than a century in mathematics. It has not just fascinating and profound outcomes in different branches of engineering and mathematical sciences, it also has plenty of uses because of its geometrical interpretation and definition. It also provides numerical quadrature rules and tools for researchers to tackle and solve a wide class of related and unrelated problems. The main focus of this paper is to introduce and explore the concept of a new family of convex functions namely generalized exponential type m-convex functions. Further, to upgrade its numerical significance, we present some of its algebraic properties. Using the newly introduced definition, we investigate the novel version of Hermite–Hadamard type integral inequality. Furthermore, we establish some integral identities, and employing these identities, we present several new Hermite–Hadamard (H–H) type integral inequalities for generalized exponential type m-convex functions. These new results yield some generalizations of the prior results in the literature.
2022
convex function
Hölder’s inequality
exponential convex function
File in questo prodotto:
File Dimensione Formato  
mathematics-10-00031-v2.pdf

non disponibili

Dimensione 334.3 kB
Formato Adobe PDF
334.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14086/1754
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact