This paper provides novel generalizations by considering the generalized conformable fractional integrals for reverse Copson’s type inequalities on time scales. The main results will be proved using a general algebraic inequality, chain rule, Hölder’s inequality, and integration by parts on fractional time scales. Our investigations unify and extend some continuous inequalities and their corresponding discrete analogues. In addition, when α = 1, we obtain some well‐known time scale inequalities due to Hardy, Copson, Bennett, and Leindler inequalities.

Fractional Reverse Coposn's Inequalities via Conformable Calculus on Time Scales

Cesarano C;
2021-01-01

Abstract

This paper provides novel generalizations by considering the generalized conformable fractional integrals for reverse Copson’s type inequalities on time scales. The main results will be proved using a general algebraic inequality, chain rule, Hölder’s inequality, and integration by parts on fractional time scales. Our investigations unify and extend some continuous inequalities and their corresponding discrete analogues. In addition, when α = 1, we obtain some well‐known time scale inequalities due to Hardy, Copson, Bennett, and Leindler inequalities.
2021
Copson’s inequality
Hölder’s inequality
conformable fractional calculus
File in questo prodotto:
File Dimensione Formato  
symmetry-13-00542-v3.pdf

non disponibili

Dimensione 334.07 kB
Formato Adobe PDF
334.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14086/1732
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact