In this work, we study the oscillation of second-order delay differential equations, by employing a refinement of the generalized Riccati substitution. We establish a new oscillation criterion. Symmetry ideas are often invisible in these studies, but they help us decide the right way to study them, and to show us the correct direction for future developments. We illustrate the results with some examples.

Qualitative Behavior of Solutions of Second Order Differential Equations

Cesarano C;
2019-01-01

Abstract

In this work, we study the oscillation of second-order delay differential equations, by employing a refinement of the generalized Riccati substitution. We establish a new oscillation criterion. Symmetry ideas are often invisible in these studies, but they help us decide the right way to study them, and to show us the correct direction for future developments. We illustrate the results with some examples.
2019
nonoscillatory solutions
oscillatory solutions
delay differential equations
File in questo prodotto:
File Dimensione Formato  
symmetry-11-00777.pdf

non disponibili

Dimensione 720.22 kB
Formato Adobe PDF
720.22 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14086/1708
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact