In this paper we discuss generalized two-variable Chebyshev polynomials and their relevant relations; in particular, by using their integral representations, we prove some operational identities. The approach is based on the generalized two-variable Hermite polynomials and the integral representations of ordinary Chebyshev polynomials of first and second kind. In addition, we discuss how the families of generalized Chebyshev polynomials can be used to prove some interesting properties related to ordinary Chebyshev polynomials of first and second kind. A fundamental role, as we see, is played by the powerful operational techniques verified by the families of generalized Hermite polynomials.
A note on two-variable Chebyshev polynomials
CESARANO C;FORNARO C
2017-01-01
Abstract
In this paper we discuss generalized two-variable Chebyshev polynomials and their relevant relations; in particular, by using their integral representations, we prove some operational identities. The approach is based on the generalized two-variable Hermite polynomials and the integral representations of ordinary Chebyshev polynomials of first and second kind. In addition, we discuss how the families of generalized Chebyshev polynomials can be used to prove some interesting properties related to ordinary Chebyshev polynomials of first and second kind. A fundamental role, as we see, is played by the powerful operational techniques verified by the families of generalized Hermite polynomials.File | Dimensione | Formato | |
---|---|---|---|
[Georgian Mathematical Journal] A note on two-variable Chebyshev polynomials.pdf
non disponibili
Dimensione
668.23 kB
Formato
Adobe PDF
|
668.23 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.