The Hermite polynomials represent a powerful tool to investigate the properties of many families of Special Functions. We discuss a special class of polynomials, recognized as Hermite polynomials, which present a flexible form to describe the two-index, one-variable Bessel functions. By using the generating function method, we will obtain some relations involving this class of Hermite polynomials and we can also compare them with the Humbert polynomials and functions.

Generalized Hermite polynomials in the description of multi-index Bessel functions

CESARANO C;FORNARO C
2015-01-01

Abstract

The Hermite polynomials represent a powerful tool to investigate the properties of many families of Special Functions. We discuss a special class of polynomials, recognized as Hermite polynomials, which present a flexible form to describe the two-index, one-variable Bessel functions. By using the generating function method, we will obtain some relations involving this class of Hermite polynomials and we can also compare them with the Humbert polynomials and functions.
2015
978-1-61804-345-0
Hermite Polynomials
Bessel functions
Generating functions
File in questo prodotto:
File Dimensione Formato  
wseas_Generalized Hermite polynomials in the description of multi-index Bessel functions.pdf

non disponibili

Dimensione 75.33 kB
Formato Adobe PDF
75.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14086/1690
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact