New integral representations of Chebyshev and Gegenbauer polynomials in terms of Hermite polynomials are introduced. It is shown that most of the properties of these classes of polynomials can be deduced in a fairly strightforward way from this representation, which provides a unifying framework for a large body of polynomial families, including generalized forms of the Humbert and Bessel type, which are a natural consequence of the point of view developed in this paper.
Si introducono nuove rappresentazioni integrali dei polinomi di Chebyshev e Gegenbauer. Si dimostra che molte delle proprietà di queste classi di polinomi possono essere dedotte da tale tipo di rappresentazione, che costituisce un elemento unificante per un largo spettro di famiglie polinomiali, che includono forme generalizzate di polinomi di Humbert e Bessel.
From Hermite to Humbert Polynomials
CESARANO C;
2003-01-01
Abstract
New integral representations of Chebyshev and Gegenbauer polynomials in terms of Hermite polynomials are introduced. It is shown that most of the properties of these classes of polynomials can be deduced in a fairly strightforward way from this representation, which provides a unifying framework for a large body of polynomial families, including generalized forms of the Humbert and Bessel type, which are a natural consequence of the point of view developed in this paper.File | Dimensione | Formato | |
---|---|---|---|
From Hermite.pdf
non disponibili
Dimensione
469.12 kB
Formato
Adobe PDF
|
469.12 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.