We consider a nonlinear Schr\"odinger equation with focusing nonlinearity of power type on a star graph ${\mathcal G}$, written as $ i \partial_t \Psi (t) = H \Psi (t) - |\Psi (t)|^{2\mu}\Psi (t)$ , where $H$ is the selfadjoint operator which defines the linear dynamics on the graph with an attractive $\delta$ interaction, with strength $\alpha < 0$, at the vertex. The mass and energy functionals are conserved by the flow. We show that for $0<\mu<2$ the energy at fixed mass is bounded from below and that for every mass $m$ below a critical mass $m^*$ it attains its minimum value at a certain $\hat \Psi_m \in H^1(\GG) $, while for $m>m^*$ there is no minimum. Moreover, the set of minimizers has the structure ${\mathcal M}=\{e^{i\theta}\hat \Psi_m\ , \theta\in \erre \}$. Correspondingly, for every $m<m^*$ there exists a unique $\omega=\omega(m)$ such that the standing wave $\hat\Psi_{\omega}e^{i\omega t} $ is orbitally stable. To prove the above results we adapt the concentration-compactness method to the case of a star graph. This is non trivial due to the lack of translational symmetry of the set supporting the dynamics, i.e. the graph. This affects in an essential way the proof and the statement of concentration-compactness lemma and its application to minimization of constrained energy. The existence of a mass threshold comes from the instability of the system in the free (or Kirchhoff's) case, that in our setting corresponds to $\al=0$.
Constrained energy minimization and orbital stability for the NLS equation on a star graph
Finco D;
2014-01-01
Abstract
We consider a nonlinear Schr\"odinger equation with focusing nonlinearity of power type on a star graph ${\mathcal G}$, written as $ i \partial_t \Psi (t) = H \Psi (t) - |\Psi (t)|^{2\mu}\Psi (t)$ , where $H$ is the selfadjoint operator which defines the linear dynamics on the graph with an attractive $\delta$ interaction, with strength $\alpha < 0$, at the vertex. The mass and energy functionals are conserved by the flow. We show that for $0<\mu<2$ the energy at fixed mass is bounded from below and that for every mass $m$ below a critical mass $m^*$ it attains its minimum value at a certain $\hat \Psi_m \in H^1(\GG) $, while for $m>m^*$ there is no minimum. Moreover, the set of minimizers has the structure ${\mathcal M}=\{e^{i\theta}\hat \Psi_m\ , \theta\in \erre \}$. Correspondingly, for every $mFile | Dimensione | Formato | |
---|---|---|---|
acfn-aihp-13.pdf
non disponibili
Dimensione
925.61 kB
Formato
Adobe PDF
|
925.61 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.