We discuss the limit of small width for the Laplacian defined on a waveguide with Robin boundary conditions. Under suitable hypothesis on the scaling of the curvature, we prove the convergence of the Robin Laplacian to the Laplacian on the corresponding graph. We show that in the limit of small width of the waveguide the transverse modes are independent. The projections on each transverse mode generically give rise to decoupling between the edges of the graph while exceptionally a coupling can occur. The coupling takes place if there exists a resonance at the threshold of the continuum spectrum of the effective Hamiltonian resulting from the projection.

Graph-like models for thin waveguides with Robin boundary conditions

Finco D
2010-01-01

Abstract

We discuss the limit of small width for the Laplacian defined on a waveguide with Robin boundary conditions. Under suitable hypothesis on the scaling of the curvature, we prove the convergence of the Robin Laplacian to the Laplacian on the corresponding graph. We show that in the limit of small width of the waveguide the transverse modes are independent. The projections on each transverse mode generically give rise to decoupling between the edges of the graph while exceptionally a coupling can occur. The coupling takes place if there exists a resonance at the threshold of the continuum spectrum of the effective Hamiltonian resulting from the projection.
File in questo prodotto:
File Dimensione Formato  
asymptotic_analysis.pdf

non disponibili

Dimensione 337.6 kB
Formato Adobe PDF
337.6 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14086/1522
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact