We provide information on a non trivial structure of phase space of the cubic NLS on a three-edge star graph. We prove that, contrarily to the case of the standard NLS on the line, the energy associated to the cubic focusing Schr odinger equation on the three-edge star graph with a free (Kirchho ) vertex does not attain a minimum value on any sphere of constant $L^2$-norm. We moreover show that the only stationary state with prescribed L2-norm is indeed a saddle point.

On the structure of critical energy levels for the cubic focusing NLS on star graphs

Finco D;
2012-01-01

Abstract

We provide information on a non trivial structure of phase space of the cubic NLS on a three-edge star graph. We prove that, contrarily to the case of the standard NLS on the line, the energy associated to the cubic focusing Schr odinger equation on the three-edge star graph with a free (Kirchho ) vertex does not attain a minimum value on any sphere of constant $L^2$-norm. We moreover show that the only stationary state with prescribed L2-norm is indeed a saddle point.
2012
nonlinear schroedinger
energy minimization
nonlinear instability
File in questo prodotto:
File Dimensione Formato  
sesquiJPA.pdf

non disponibili

Dimensione 183.36 kB
Formato Adobe PDF
183.36 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14086/1519
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact