In this paper we discuss generalized two-variable Chebyshev polynomials and their relevant relations; in particular, by using their integral representations, we prove some operational identities. The approach is based on the generalized two-variable Hermite polynomials and the integral representations of ordinary Chebyshev polynomials of first and second kind. In addition, we discuss how the families of generalized Chebyshev polynomials can be used to prove some interesting properties related to ordinary Chebyshev polynomials of first and second kind. A fundamental role, as we see, is played by the powerful operational techniques verified by the families of generalized Hermite polynomials.

A note on two-variable Chebyshev polynomials

Cesarano C;Fornaro C
2017-01-01

Abstract

In this paper we discuss generalized two-variable Chebyshev polynomials and their relevant relations; in particular, by using their integral representations, we prove some operational identities. The approach is based on the generalized two-variable Hermite polynomials and the integral representations of ordinary Chebyshev polynomials of first and second kind. In addition, we discuss how the families of generalized Chebyshev polynomials can be used to prove some interesting properties related to ordinary Chebyshev polynomials of first and second kind. A fundamental role, as we see, is played by the powerful operational techniques verified by the families of generalized Hermite polynomials.
File in questo prodotto:
File Dimensione Formato  
A note on two-variable Chebyshev poly.pdf

non disponibili

Dimensione 668.23 kB
Formato Adobe PDF
668.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14086/1182
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact