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Abstract
In this paper, the fractional Riemannwave equationwithM-truncated derivative (FRWE-MTD) is
considered. The Jacobi elliptic functionmethod and themodified extended tanh functionmethod are
applied to acquire new elliptic, rational, hyperbolic, and trigonometric functions solutions.Moreover,
we expand some earlier studies. The obtained solutions are important in explaining some exciting
physical phenomena, since the Riemannwave equation is used in various fields, including quantum
mechanics, optics, signal processing, and general relativity. Also, this equation is used to describe the
propagation of waves in various dispersive systems, wherewavemotion is affected by themedium
throughwhich it travels. Several 3D and 2D graphs are shown to demonstrate how theM-truncated
derivative affects the exact solutions of the FRWE-MTD.

1. Introduction

The fractional nonlinear evolution equation (FNLEE) is amathematical equation that includes both a
nonlinear function and a fractional derivative. Fractional derivatives are a type of ordinary derivative that is
appropriate for explaining systems withmemory effects or long-range interactions. These equations have
recently gained a lot of interest because of their ability to represent and clarifymany different physical
phenomena [1–5].

Many physical phenomena, including diffusion processes, viscoelasticity, and heat conduction, display
nonlinearity andmemory effects. Fractional nonlinear evolution equations have been effectively used to
describe and comprehend these events, offeringmore insight into the underlying dynamics. For example, in the
study of heat conduction, the traditional Fourier’s law is expanded using fractional derivatives to reflect the
nonlocal and nonlinear effects in the system.

Furthermore, many engineering systems, including electrical circuits, control systems, and signal
processing, have nonlinear andmemory-dependent behavior. Traditional linearmodels are insufficient to
effectively describe and analyze complex systems. Fractional nonlinear evolution equations offer an effective
foundation for designing and optimizing engineering systems, allowing engineers to createmore effective
and robust solutions.

Due to the importance of FNLEE,many authors have proposedmanymethods for obtaining its solutions
for instance Lie symmetrymethod [6], Lie group analysis [7, 8], fractional sub-equationmethod [9],
invariant subspacemethod [8], Jacobi elliptic functionmethod [10], optimal auxiliary functionmethod [11],
generalized Riccati equationmethod [12], He’s semi-inversemethod [13], and etc.

Considering fractional differential equations with regard to time can help us comprehend a variety of
physical phenomena. Incorporating fractional derivatives into amodel allows us to get deeper insights into
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the behavior of physical systems and design improved control techniques. Therefore, in this paper, we look at
the fractional Riemannwave equation withM-truncated derivative (FRWE-MTD) [14]:

e e e+ + + =
=

d
a s RW 0,

, 1
t xxy x x

y x

,
,

1 2 3

( )
   
 

where ε1, ε2, ε3 are real constants and d
a s

t,
, is M-truncated derivative operator [15]. We consider the

M-truncated derivative here because it satisfies all classical derivative formulas including the chain rule,
quotient rule, and product rule. Also, it generalizes the conformable fractional derivative with δ= 1.

The Riemannwave equation (RWE) has several applications in a range of scientific disciplines. The RWE is
important in quantummechanics because it characterizes particle behavior at the quantum level. The equation
depicts thewave function of a particle, revealing its location,momentum, and energy. Alongwith quantum
mechanics concepts, the Riemannwave equation helps us understandwave-particle duality and quantum
tunneling.

In optics, the RWE is essential for understanding the behavior of light waves. It enables scientists and
engineers to investigate light characteristics including as refraction, diffraction, and interference, as well as
design optical devices such as lenses and cameras.

In acoustics, it aids in the study of soundwaves and their propagation across differentmediums. Solving the
Riemannwave equation allows us to determine the behavior of soundwaves in air, water, and othermaterials,
which aids in the design of acoustic systems such as speakers andmusical instruments.

Due to the significance of RWE, numerous authors have obtained the solution of the Riemannwave
equation by employing variousmethods, including generalized ¢G G( )-expansionmethod [16], new
extended direct algebraic method [17], generalized Kudryashovmethod [18], extended tanh function
technique [19], Wronskianmethod [20], generalized exponential rational function approach [21], and
modified q-uexp( ( ))-functionmethod [22].While, the solutions of FRWEwith conformable fractional
derivative have acquired by improved ¢G G( )-expansionmethod [23]. Moreover, the stochastic Riemann
wave equation was considered byMohammed et al. [24] and they found its solutions by using the extended
tanh–cothmethod and themappingmethod.

Our novelties of this paper are:

• Obtaining the exact solutions of FRWE-MTD (1). To get these solutions, we apply two different
approaches, including the Jacobi elliptic function andmodified extended tanh functionmethods. By using
thesemethods various kinds of solitons such as periodic solitons, dark solitons, bright solitons, kink
solitons and another solitons solutions for FRWE-MTD (1 ) are obtained. Due to the practical value of
soliton solutions in the Riemannwave equation in describing certain intriguing scientific phenomena
since the RWE equation is employed in a variety of domains, including quantum physics, optics, signal
processing, and general relativity.

• Expanding upon some earlier research, such as the results presented in [19].

• Studying the impact ofM-truncated derivative on the exact solutions of the FRWE-MTD (1) by plotting
various obtained solutions.

The following is the outline of the article: In section 2, the definition and properties ofM-truncated
derivative are given. In section 3, the wave equation for the FRWE-MTD (1) is derived. In section 4,
the exact solution of the FRWE-MTD (1) is acquired.While in section 5, the impact of theM-truncated
derivative on the generated solutions of FRWE-MTD is addressed. Finally, we introduce the conclusions of
this paper.
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2.M-truncated derivative

Several versions of fractional derivatives have been developed throughout the years, each attempt to provide a
more accurate and effective description of the fractional order derivatives. Themost commonly used versions
are the Riemann-Liouville, Grünwald-Letnikov, Caputo andHadamard, Riesz, Erdelyi [25–28]. Classical
derivative formulas, such as the chain rule, quotient rule, and product rule, do not apply to thewide variety of
fractional derivative kinds. Recently, Sousa et al [15] introduced a newderivative known asM-truncated
derivative (MTD)which satisfies all classical derivative formulas. They defined theMTDof order 0< α � 1 for
the function ¥ u: 0,[ )  as

=
-

>d
a s d s

a
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-
u t

u tE ht u t
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forσ> 0 and Îx .
TheMTDhas the following properties for all differentiable functionsZ andψ and for real constants a, b,υ :
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3.Wave equation for the FRWE-MTD

Todeduce thewave equation of FRWE-MTD (1), we apply

q q q q q
s w
a

= = = + +
G + ax y t u x y t v x y t, , , , , and

1
, 21 2( ) ( ) ( ) ( ) ( ) ( ) 

where u and v are real functions, θ1 and θ2 are thewave frequency, andω is thewave speed. It is noted that

q q q q q= ¢ = ¢ = ¢ = ¢u u u v, , , , 3x y xxy x1 2 1
2

2 1 ( )   
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and

w= ¢d
a s u . 4t,

, ( ) 

Inserting equation (2) into equation (1) and utilizing (3–4), we obtain

w e q q e q e q
q q

¢ + ¢¢¢ + ¢ + ¢ =
¢ = ¢

u u uv vu

u v

0,

. 5
1 1

2
2 2 1 3 1

2 1

( )
( )

Integrating the second equation of (5) and neglecting the integral constant, we get

q
q

=v u. 62

1

( )

Plugging equation (6) into the first equation of (5), we have

e q q w e q e q¢ + ¢ + + ¢ =u u uu 0. 71 1
2

2 2 2 3 2( ) ( )

Integrating equation (7) once, we attain

 + + =u u u 0, 81 2
2 ( ) 

where

w
e q q

e e
e q

= =
+

and
2

.1
1 1

2
2

2
2 3

1 1
2

 

4. Exact solutions of FRWE-MTD

To get exact solutions for equation (1), we use two variousmethods: Jacobi elliptic functionmethod (JEF-
method) and themodified extended tanh functionmethod (METF-method).

4.1. JEF-method
Here, we apply the JEF-method described in [29]. Let the solutions of equation (8) have the form:

åq g q= W
=

u , 9
j

M

k
k

0

( ) ( ) ( )

where γ0, γ1, K,γM are undefined constants such that γM ≠ 0 and q q dW = sn ,( ) ( ) is Jacobi elliptic sine
function for 0 < δ < 1. Tofind the value ofM, we balance u2 with u″ in equation (8) to have

= +M M2 2,

then

=M 2. 10( )

Rewriting equation (9) and using equation (10), we get

q g g q g q= + W + Wu . 110 1 2
2( ) ( ) ( ) ( )

Plugging equation (11) into equation (8), we have

d g g d g g g g g g d g g+ W + + W + - + + + W6 2 2 2 4 12
2 2 2

2 4 2
1 2 1 2

3
0 2 2 2

2
1 2 2 1

2 2( ) ( ) ( ( ) )    

d g g g g g g g- + - - W + + + =1 2 2 0.2
1 1 1 2 0 1 2 1 0 2 0

2[( ) ] ( )   

For n= 4, 3, 2, 1, 0, equating each coefficient ofΩn to zero, we attain

d g g+ =6 0,2
2 2 2

2

d g g g+ =2 2 0,2
1 2 1 2

g g g d g g- + + + =2 4 1 0,0 2 2 2
2

1 2 2 1
2( )  

d g g g g+ - - =1 2 0,2
1 1 1 2 0 1( )  

and

g g g+ + =2 0.2 1 0 2 0
2 

The solutions of these equations yields the following two sets:
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First set:
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For thefirst set, the solutions of FRWE-MTD (1), utilizing (11), are

d d d d
q d=

+ - - +
-x y t sn, ,

2 1 2 1 6
, , 12

2 4 2
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where q q q= + + s e q q d d
a

aG + - +x y t1 2
1 4 11 1

2
2

4 2( )[ ] .When δ→ 1, equations (12 ) and (13) become

q= -x y t, ,
2 6

tanh , 14
2 2
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q
q
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2 6
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1 2 2
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with q q q= + + s e q q
a

aG +x y t .1 2
1 1 1

2
2( )[ ]

For the second set, the solutions of FRWE-MTD (1), utilizing (11), are

d d d d
q d=

+ + - +
-x y t sn, ,

2 1 2 1 6
, , 16

2 4 2

2

2

2

2( ) ( ) ( ) ( )
 

⎡

⎣
⎢

⎤

⎦
⎥

q
q

d d d d
q d=
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2 1 2 1 6
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1

2 4 2
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2
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where q q q= + - s e q q d d
a

aG + - +x y t1 2
1 4 11 1

2
2

4 2( )[ ] .

When δ→ 1, equations (16) and (17) become

q q= - =x y t, ,
6 6

tanh
6

sech , 18
2 2

2

2

2( ) ( ) ( ) ( )
  

q
q

q=x y t, ,
6

sech , 192

1 2
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where q q q= + - s e q q
a

aG +x y t .1 2
1 4 1 1

2
2( )[ ]

In similar steps, we can change sn in (11) by cn, where q dcn ,( ) is Jacobi elliptic cosine function, to have the
FRWE-MTD (1) as follows:

d d d d
q d=

- - - +
+x y t cn, ,

2 4 2 1 6
, , 20

2 4 2

2

2

2

2( ) ( ) ( ) ( )
 

⎡
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⎢

⎤
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⎥

q
q

d d d d
q d=

- - - +
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1

2 4 2

2

2
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where q q q= + + s e q q d d
a

aG + - +x y t1 2
1 4 11 1

2
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4 2( )[ ] , or

d d d d
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with q q q= + - s e q q d d
a

aG + - +x y t .1 2
1 4 11 1

2
2
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4.2.METF-method
Weutilize here theMETF-method that stated in [30]. Assuming the solution u of equation (8) has the type

å åq = + = + + + +
=

=

=

=
- - -u a Z b Z a a Z a Z b Z b Z , 24

j

M

j
j

j
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j
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2
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0 1 2
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1
1
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whereZ solves

¢ = +Z Z k. 252 ( )
equation (25) has the solutions:

q q q q= = - >Z k k Z k k ktan or cot if 0, 26( ) ( ) ( ) ( ) ( )
or

q q q q= - - - = - - - <Z k k Z k k ktanh or coth if 0, 27( ) ( ) ( ) ( ) ( )
or

q
q

=
-

=Z k
1

if 0. 28( ) ( )

Substituting equation (24) into equation (8), we get

+ + + + + + +

+ + + + + + + +
+ + + + + + +-

a a Z a a a Z ka a a a a Z

ka a a a a b Z k a b a a a b

a b kb a b a b b Z kb a b
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2 2 2 2 2 2

2 2 2 2 8 2

2 2 2
2 4

1 2 1 2
3

2 0 2 2 1
2

2 1 2
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2 1 2
2

1
2

2 1 2
3 2

2 2 2
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The coefficients of each power ofZ are set to zero as follows:

+ =a a6 0,2 2 2
2

+ =a a a2 2 0,1 2 1 2

+ + + =ka a a a a8 2 0,2 0 2 2 1
2

2 1 2  
+ + + =ka a a a a b2 2 2 0,1 1 1 2 0 1 2 1 

+ + + + + =k a b a a a b a b2 2 2 2 0,2
2 2 1 0 2 0

2
2 1 1 2 2 2   

+ + + =kb a b a b b2 2 2 0,1 2 0 1 2 1 2 1 1  

+ + + =kb a b b b8 2 0,2 0 2 2 1
2

2 1 2  

+ =b k b b2 2 0.1
2

2 1 2
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+ =k b b6 0.2
2 2 2

2

Weget the four separate sets by solving these equations as follows:
First set:

w e q q=
-

= =
-

= = =a
k

a a b b k
6
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6
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2

1 2
2

1 2 1 1
2
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Second set:

w e q q=
-

= =
-

= = = -a
k

a a b b k
2
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6
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1 2
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Third set:

w e q q=
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Fourth set:
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2
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First set:By using (29), the solution of equation (8) takes the form

q q=
-

-u
k

Z
6 6

.
2 2

2( ) ( )
 

ForZ(θ), there aremany distinct cases:
Case1:When k> 0, we have by using (26)

q q q=
-

- = -u
k k

k
k

k
6 6

tan
6

sec ,
2 2

2

2

2( ) ( ) ( )
  

and

q q q=
-

- =
-

u
k k

k
k

k
6 6

cot
6

csc .
2 2

2

2

2( ) ( ) ( )
  

Hence, the exact solutions of FRWE-MTD (1), using (6), are

q= -x y t
k

k, ,
6

sec , 33
2

2( ) ( ) ( )

q
q

q= -x y t
k

k, ,
6

sec , 342

2 1

2( ) ( ) ( )


and

q=
-

x y t
k

k, ,
6

csc , 35
2

2( ) ( ) ( )

q
q

q= -x y t
k

k, ,
6

csc , 362

2 1

2( ) ( ) ( )


where q q q= + + s e q q
a

aG +x y t .k
1 2

1 4 1 1
2

2( )[ ]

Case2:When k< 0, we have by using (27)

q q q=
-

+ - =
-

-u
k k

k
k

k
6 6

tanh
6

sech ,
2 2

2

2

2( ) ( ) ( )
  

and

q q q=
-

+ - = -u
k k

k
k

k
6 6

coth
6
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2 2

2

2

2( ) ( ) ( )
  

Hence, the exact solutions of FRWE-MTD (1), using (6), are

q=
-

-x y t
k

k, ,
6

sech , 37
2

2( ) ( ) ( )

q
q

q= - -x y t
k

k, ,
6

sech , 382

2 1

2( ) ( ) ( )


and

q= -x y t
k

k, ,
6

csch , 39
2

2( ) ( ) ( )

q
q

q= -x y t
k

k, ,
6

csch . 402

2 1

2( ) ( ) ( )


Case3:When k= 0, we get by using (28)

q
q

= -u
6 1

.
2

2
( )


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Therefore, the exact solutions of FRWE-MTD (1), using (6), are

q
=

-
x y t, ,

6
, 41

2
2

( ) ( )


q
q q

=
-

x y t, ,
6

, 422

2 1
2

( ) ( )


where θ= θ1x+ θ2y.
Second set:By using (30), the solution of equation (8) takes the form

q q=
-

-u
k

Z
2 6

.
2 2

2( ) ( )
 

ForZ(θ), there aremany distinct cases:
Case1:When k> 0, we have by using (26)

q q=
-

-u
k k

k
2 6

tan ,
2 2

2( ) ( )
 

and

q q=
-

-u
k k

k
2 6

cot .
2 2

2( ) ( )
 

Therefore, the exact solutions of FRWE-MTD (1), using (6), are

q=
-

-x y t
k k

k, ,
2 6

tan , 43
2 2

2( ) ( ) ( )
 
q
q

q
q

q=
-

-x y t
k k

k, ,
2 6

tan , 442

2 1

2

2 1

2( ) ( ) ( )
 

and

q=
-

-x y t
k k

k, ,
2 6

cot , 45
2 2

2( ) ( ) ( )
 
q
q

q
q

q=
-

-x y t
k k

k, ,
2 6

cot , 462

2 1

2

2 1

2( ) ( ) ( )
 

where q q q= + - s e q q
a

aG +x y t .k
1 2

1 4 1 1
2

2( )[ ]

Case2:When k< 0, one can get by using (27)

q q=
-

+ -u
k k

k
2 6

tanh ,
2 2

2( ) ( )
 

and

q q=
-

+ -u
k k

k
2 6

coth .
2 2

2( ) ( )
 

Therefore, the exact solutions of FRWE-MTD (1), using (6), are

q=
-

+ -x y t
k k

k, ,
2 6

tanh , 47
2 2

2( ) ( ) ( )
 
q
q

q
q

q=
-

+x y t
k k

k, ,
2 6

tanh , 482

2 1

2

2 1

2( ) ( ) ( )
 

and

q=
-

+ -x y t
k k

k, ,
2 6

coth , 49
2 2

2( ) ( ) ( )
 
q
q

q
q

q=
-

+x y t
k k

k, ,
2 6

coth , 502

2 1

2

2 1

2( ) ( ) ( )
 

where q q q= + - s e q q
a

aG +x y t .k
1 2

1 4 1 1
2

2( )[ ]

Case 3:When k= 0, we have by using (28)

q
q

=
-

u
6 1

.
2

2
( )


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Consequently, the exact solutions of FRWE-MTD (1), using (6 ), are

q
=

-
x y t, ,

6
, 51

2
2

( ) ( )


q
q q

=
-

x y t, ,
6

, 522

2 1
2

( ) ( )


where θ= θ1x+ θ2y.
Third set:By using (31), the solution of equation (8) takes the form

q q q=
-

- - -u
k

Z
k

Z
12 6 6

.
2 2

2
2

2

2( ) ( ) ( )
  

ForZ(θ), there aremany distinct cases:
Case 1:When k> 0, we have by using (26)

q q q

q q

=
-

- -

=- +

u
k k

k
k

k

k
k k

12 6
tan

6
cot

6
sec csc .

2 2

2

2

2

2

2 2

( ) ( ) ( )

[ ( ) ( )]

  



Consequently, the exact solutions of FRWE-MTD (1), using (6 ), are

q q= - +x y t
k

k k, ,
6

sec csc , 53
2

2 2( ) [ ( ) ( )] ( )

q
q

q
q
q

q=
-

-x y t
k

k
k

k, ,
6

sec
6

csc , 542

2 1

2 2

2 1

2( ) ( ) ( ) ( )
 

where q q q= + + s e q q
a

aG +x y t .k
1 2

1 16 1 1
2

2( )[ ]

Figure 1. (a-c) present 3D-profile of the periodic solution x y t, ,( ) given in equation (16) forα = 1, 0.8, 0.6 (d) shows 2D-profile
for these values ofα
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Case 2:When k< 0, we get by using (27)

q q q

q q

=
-

+ - + -

=
-

- - -

u
k k

k
k

k

k
k k

12 6
tanh

6
coth

6
sech csch .

2 2

2

2

2

2

2 2

( ) ( ) ( )

[ ( ) ( )]

  



Therefore, the exact solutions of FRWE-MTD (1), using (6), are

q q=
-

- - -x y t
k

k k, ,
6

sech csch , 55
2

2 2( ) [ ( ) ( )] ( )


q
q

q
q
q

q=
-

- + -x y t
k

k
k

k, ,
6

sech
6

csch , 562

2 1

2 2

2 1

2( ) ( ) ( ) ( )
 

where q q q= + + s e q q
a

aG +x y t .k
1 2

1 16 1 1
2

2( )[ ]

Case 3:When k= 0, we have by using (28)

q
q

q= +u
6 1 6

.
2

2
2

2( )
 

Consequently, the exact solution of FRWE-MTD (1), using (6), are

⎡
⎣

⎤
⎦q

q= +x y t, ,
6 1

, 57
2

2
2( ) ( )



⎡
⎣

⎤
⎦

q
q q

q= +x y t, ,
6 1

. 582

2 1
2

2( ) ( )


Figure 2. (a-c) present 3D-profile of the periodic solution x y t, ,( ) given in equation (17) for θ2 = − 2 and forα = 1, 0.8, 0.6 (d)
shows 2D-shape for these values ofα
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Fourth set:By using (32), the solution of equation (8) takes the form

q q q= - - -u
k

Z
k

Z
8 6 6

.
2 2

2
2

2

2( ) ( ) ( )
  

ForZ(θ), there aremany distinct cases:
Case 1:When k> 0, we get by using (26)

q q q= - -u
k k

k
k

k
8 6

tan
6

cot .
2 2

2

2

2( ) ( ) ( )
  

Therefore, the exact solutions of FRWE-MTD (1), using (6), are

q q= - -x y t
k k

k
k

k, ,
8 6

tan
6

cot , 59
2 2

2

2

2( ) ( ) ( ) ( )
  

q
q

q
q

q
q
q

q= - -x y t
k k

k
k

k, ,
8 6

tan
6

cot , 602

2 1

2

2 1

2 2

2 1

2( ) ( ) ( ) ( )
  

where q q q= + - s e q q
a

aG +x y t .k
1 2

1 14 1 1
2

2( )[ ]

Case 2:When k< 0, we have by using (27)

q q q= + - + -u
k k

k
k

k
8 6

tanh
6

coth .
2 2

2

2

2( ) ( ) ( )
  

Therefore, the exact solutions of FRWE-MTD (1), using (6), are

q q= + - + -x y t
k k

k
k

k, ,
8 6

tanh
6

coth , 61
2 2

2

2

2( ) ( ) ( ) ( )
  

Figure 3. (a-c) present 3D-shape of the dark solution x y t, ,( ) given in equation (18) for δ = 0.5, θ2 = − 0.8 andα = 1, 0.8, 0.6 (d)
shows 2D-profile for these values ofα
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q
q

q
q

q
q
q

q= + - + -x y t
k k

k
k

k, ,
8 6

tanh
6

coth , 622

2 1

2

2 1

2 2

2 1

2( ) ( ) ( ) ( )
  

where q q q= + - s e q q
a

aG +x y t .k
1 2

1 14 1 1
2

2( )[ ]

Case 3:When k= 0, we get by using (28)

⎡
⎣

⎤
⎦

q
q

q= +u
6 1

.
2

2
2( )



Consequently, the exact solutions of FRWE-MTD (1), using (6 ), are

⎡
⎣

⎤
⎦q

q= +x y t, ,
6 1

, 63
2

2
2( ) ( )



⎡
⎣

⎤
⎦

q
q q

q= +x y t, ,
6 1

, 642

2 1
2

2( ) ( )


where θ= θ1x+ θ2y.

Remark 1. If we put s = 0 and a = 1 in equations (37), (38 ), (47), (48), (49), (50), (61), and (62), thenwe attain
the same solutions (30), (31), (32), (33), (34), (35), (28), and (29), respectively, that stated in [19].

5.Graphical representations and discussion

In this paper, we acquired the exact solutions of FRWE-MTD (1) by utilizing two various techniques such as JEF-
method andMETF-method. The JEF-method has provided elliptic soliton solutions.WhileMETF-method has
provided rational, hyperbolic, and trigonometric soliton solutions. To illustrate the behavior of these solutions
and the impact of theM-truncated derivative on the obtained solutions of FRWE-MTD (1), different graphical
representations are provided. For ε1=− 0.5, ε2= ε3= θ1= 1, θ2=− 2 and for varying values ofα, we simulate

Figure 4. (a-c) present 3D-shape of the bright solution x y t, ,( ) given in equation (19) for δ = 0.5, θ2 = − 0.8 and forα = 1, 0.8,
0.6 (d) shows 2D-profile for these values ofα
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the graphical representations for some attained solutions, including equations (16), (17), (18) and (19) as
follows:

Frompreviousfigures 1–4, we deduce that when the fractional derivative orderα of FRWE-MTD (1)
increases, the surfacemoves into the right side.

6. Conclusions

In this paper, we considered the Riemannwave equationwithM-truncated derivative (FRWE-MTD) (1). To get
novel elliptic, rational, hyperbolic, and trigonometric function solutions, the Jacobi elliptic function approach
and themodified extended tanh functionmethod are used. The performance ofmodified extended tanh
functionmethod is reliable and effective, and it can be applied tomany other nonlinear evolution equations.
Because theRWE is used in various fields, including quantummechanics, optics, signal processing, and general
relativity, the solutions provided here are critical for understanding a variety of intriguing physical phenomena.
Moreover, the influence laws of these solutions of the Riemannwave equation cannot be overstated. Their
stability, efficiency, and versatilitymake solitons indispensable inmodern communication systems, scientific
research, and engineering applications. By harnessing the power of solitons, researchers and engineers can
continue to push the boundaries of wave physics and develop innovative technologies that benefit society as a
whole. Furthermore, we extended someprevious results such as those reported in [19]. Finally, theMATLAB
softwarewas used to demonstrate the effect ofMTDon the exact solutions of the FRWE-MTD (1).We deduced
thatwhen the fractional derivative order of FRWE-MTD (1) increases, the surfacemoves into the right side. In
the futurework, we can discusses the Riemannwave equationwith additive noise.
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