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Abstract

In this paper, the fractional Riemann wave equation with M-truncated derivative (FRWE-MTD) is
considered. The Jacobi elliptic function method and the modified extended tanh function method are
applied to acquire new elliptic, rational, hyperbolic, and trigonometric functions solutions. Moreover,
we expand some earlier studies. The obtained solutions are important in explaining some exciting
physical phenomena, since the Riemann wave equation is used in various fields, including quantum
mechanics, optics, signal processing, and general relativity. Also, this equation is used to describe the
propagation of waves in various dispersive systems, where wave motion is affected by the medium
through which it travels. Several 3D and 2D graphs are shown to demonstrate how the M-truncated
derivative affects the exact solutions of the FRWE-MTD.

1. Introduction

The fractional nonlinear evolution equation (FNLEE) is a mathematical equation that includes both a
nonlinear function and a fractional derivative. Fractional derivatives are a type of ordinary derivative that is
appropriate for explaining systems with memory effects or long-range interactions. These equations have
recently gained a lot of interest because of their ability to represent and clarify many different physical
phenomena [1-5].

Many physical phenomena, including diffusion processes, viscoelasticity, and heat conduction, display
nonlinearity and memory effects. Fractional nonlinear evolution equations have been effectively used to
describe and comprehend these events, offering more insight into the underlying dynamics. For example, in the
study of heat conduction, the traditional Fourier’s law is expanded using fractional derivatives to reflect the
nonlocal and nonlinear effects in the system.

Furthermore, many engineering systems, including electrical circuits, control systems, and signal
processing, have nonlinear and memory-dependent behavior. Traditional linear models are insufficient to
effectively describe and analyze complex systems. Fractional nonlinear evolution equations offer an effective
foundation for designing and optimizing engineering systems, allowing engineers to create more effective
and robust solutions.

Due to the importance of FNLEE, many authors have proposed many methods for obtaining its solutions
for instance Lie symmetry method [6], Lie group analysis [7, 8], fractional sub-equation method [9],
invariant subspace method [8], Jacobi elliptic function method [10], optimal auxiliary function method [11],
generalized Riccati equation method [12], He’s semi-inverse method [13], and etc.

Considering fractional differential equations with regard to time can help us comprehend a variety of
physical phenomena. Incorporating fractional derivatives into a model allows us to get deeper insights into
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the behavior of physical systems and design improved control techniques. Therefore, in this paper, we look at
the fractional Riemann wave equation with M-truncated derivative (FRWE-MTD) [14]:

MEIW 4+ eWey + 2WR + £3RW, = 0,
W, = Ra, W

where ¢, €5, €5 are real constantsand M/ is M-truncated derivative operator [15]. We consider the
M-truncated derivative here because it satisfies all classical derivative formulas including the chain rule,
quotient rule, and product rule. Also, it generalizes the conformable fractional derivative with § = 1.

The Riemann wave equation (RWE) has several applications in a range of scientific disciplines. The RWE is
important in quantum mechanics because it characterizes particle behavior at the quantum level. The equation
depicts the wave function of a particle, revealing its location, momentum, and energy. Along with quantum
mechanics concepts, the Riemann wave equation helps us understand wave-particle duality and quantum
tunneling.

In optics, the RWE is essential for understanding the behavior of light waves. It enables scientists and
engineers to investigate light characteristics including as refraction, diffraction, and interference, as well as
design optical devices such as lenses and cameras.

In acoustics, it aids in the study of sound waves and their propagation across different mediums. Solving the
Riemann wave equation allows us to determine the behavior of sound waves in air, water, and other materials,
which aids in the design of acoustic systems such as speakers and musical instruments.

Due to the significance of RWE, numerous authors have obtained the solution of the Riemann wave
equation by employing various methods, including generalized (G’/G)-expansion method [16], new
extended direct algebraic method [17], generalized Kudryashov method [18], extended tanh function
technique [19], Wronskian method [20], generalized exponential rational function approach [21], and
modified exp(—u(#))-function method [22]. While, the solutions of FRWE with conformable fractional
derivative have acquired by improved (G’/G)-expansion method [23]. Moreover, the stochastic Riemann
wave equation was considered by Mohammed et al. [24] and they found its solutions by using the extended
tanh—coth method and the mapping method.

Our novelties of this paper are:

+ Obtaining the exact solutions of FRWE-MTD (1). To get these solutions, we apply two different
approaches, including the Jacobi elliptic function and modified extended tanh function methods. By using
these methods various kinds of solitons such as periodic solitons, dark solitons, bright solitons, kink
solitons and another solitons solutions for FRWE-MTD (1 ) are obtained. Due to the practical value of
soliton solutions in the Riemann wave equation in describing certain intriguing scientific phenomena
since the RWE equation is employed in a variety of domains, including quantum physics, optics, signal
processing, and general relativity.

+ Expanding upon some earlier research, such as the results presented in [19].

+ Studying the impact of M-truncated derivative on the exact solutions of the FRWE-MTD (1) by plotting
various obtained solutions.

The following is the outline of the article: In section 2, the definition and properties of M-truncated
derivative are given. In section 3, the wave equation for the FRWE-MTD (1) is derived. In section 4,
the exact solution of the FRWE-MTD (1) is acquired. While in section 5, the impact of the M-truncated
derivative on the generated solutions of FRWE-MTD is addressed. Finally, we introduce the conclusions of
this paper.
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To Solve the fractionsl Riemann wave equation
with M-truncated derivative (FRWE-MTD)

Using the sppropriate
transformation o transfer & to ODE

{ Using two methods |
Jacobi elliptic function Modified extended tanh
method function method
Getting sliptic function Getting rational, hyperbolic, and

solutions trigonometric functions solutions

Putting the obtained solutions in the
previous transformation

Ottaining the solutions of FRWE-MTD

Addressing the impact of the M-truncated derivative
on the generated solutions of FRWE-MTD

2. M-truncated derivative

Several versions of fractional derivatives have been developed throughout the years, each attempt to provide a
more accurate and effective description of the fractional order derivatives. The most commonly used versions
are the Riemann-Liouville, Griinwald-Letnikov, Caputo and Hadamard, Riesz, Erdelyi [25-28]. Classical
derivative formulas, such as the chain rule, quotient rule, and product rule, do not apply to the wide variety of
fractional derivative kinds. Recently, Sousa et al[15] introduced a new derivative known as M-truncated
derivative (MTD) which satisfies all classical derivative formulas. They defined the MTD of order 0 < o« < 1 for
the function u: [0, c0) — Ras

u(tEs,o (ht™)) — u(t)

, fort > 0,
h

M u(t) = lim
’ h—0

where
5 k

X
E o == R )
o (%) ,gg T'(ck + 1)

foroc>0and x € C.

The MTD has the following properties for all differentiable functions Z and ¢ and for real constants a, b, v:
(1) MP(aZ + by) = aM$T(Z) + bMPT (W)
Q) M) = ot

(3) MG (Z) = ZMETh + MY Z;

tl a d_Z_
T(c+1) dt’

(5) M7 (Zo)(t) = Z' (W O)) M7 Y (@).

(4) Mg (2) (1) =

3. Wave equation for the FRWE-MTD

To deduce the wave equation of FRWE-MTD (1), we apply
I'(c + Dw ;
e

W(x, y, t) = u(@), R(x, y,t) =v(#)and § = 6;x + 6,y + @ 2)

where uand v arereal functions, 8, and 6, are the wave frequency, and w is the wave speed. It is noted that

We =0/, W, = 0u', Wy = 00,1, Ry = 6,7, 3)
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and
MGEW = wid'. (4)
Inserting equation (2) into equation (1) and utilizing (3—4), we obtain

wi' 4+ 80 0,u" + (.6, + s36,vu’) = 0,

Oru’ = 61v'. (5)
Integrating the second equation of (5) and neglecting the integral constant, we get
0>
V=gt (©)
Plugging equation (6) into the first equation of (5), we have
a070,u" 4+ wu' + (620, + 30)u = 0. 7
Integrating equation (7) once, we attain
u" + hyu+ hyu? =0, €))
where
ﬁ1:L and h, = €2+€3.
€070, 26,07

4, Exact solutions of FRWE-MTD

To get exact solutions for equation (1), we use two various methods: Jacobi elliptic function method (JEF-
method) and the modified extended tanh function method (METF-method).

4.1.JEF-method
Here, we apply the JEF-method described in [29]. Let the solutions of equation (8) have the form:

M

u®) = 10k, ©)

=0
where 7y, 71, ...,ymare undefined constants such that v,, = 0and Q(8) = sn(0, 6)is Jacobi elliptic sine
function for0 < § < 1. To find the value of M, we balance 1> with 1" in equation (8) to have
2M =M + 2,
then
M = 2. (10)

Rewriting equation (9) and using equation (10), we get

u(®) = v + NnQO) + 1.2%0). (11)
Plugging equation (11) into equation (8), we have

(66272 + ha v + 26271 + 2ha )L + Qy02he — 42(82 + 1) + Ty + ho D)2
—[(8” + Dy — um — 22yl + 272 + Tuyo + havg) = 0.
Forn =4, 3,2, 1,0, equating each coefficient of " to zero, we attain
662y, + hav3 =0,
20" + 2oy, =0,
2900y — (82 + 1) + i + hayi =0,

(8 4+ Dy — lum — 2hayom = 0,

and
27, + hiyo + Bayh = 0.

The solutions of these equations yields the following two sets:

4
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First set:
A8+ 1) — 166* — 1667 + 1
Yo 2ﬁ2 >
) M= 07
_ —662
72 ﬁz >
w = 45191292\/64 — 62 + 1.
Second set:
20024+ 1) + 2464 = 62+ 1
Yo = »
ha
) M= 0)
— 682
72 = >
&2
w = —4510]292\¢(54 — 62 + 1.

For the first set, the solutions of FRWE-MTD (1), utilizing (11), are

_ 24D 296t -+l 6_625”2(9 5)

W(x, y, t 12
(x, y, 1) , i (12)
2 _ 1 _ o 2
Revyony= 2| 2EED WO -0 H L 60 g g |, (13)
01 ﬁz ﬁZ
where 0 = 0,x + O,y + o+ 1)[48‘%2“64_624“ Uto When § — 1, equations (12 ) and (13) become
W(x, y, t) = 2 itanh2(9), (14)
fiy h,
0,1 2 6
Rx, v, t) = =| — — —tanh?(9) |, 15
(% p, 1) ) [ﬁz I ( )] (15)
with § = 01x + 6,y + L@+ Diabif) 1(1[5191292]1‘”.
For the second set, the solutions of FRWE-MTD (1), utilizing (11), are
2 [c4 _ <2 2
W(x,y,t):2(5 + 1) + 246 6 +1 —@snz(e,é), (16)
h, hs
2 1_ < 2
Ry 1) — 2| 2O LD H WO 20 4] 80 g ) |, (17)
0, hy fiy
where § = 0,x + 6,y — F(UH)[%H‘Z? S8t
When 6 — 1, equations (16) and (17) become
6 6 6
W(x, y, t) = — — — tanh?(0) = — sech?(0), 18
(x, ¥, 1) fiz ﬁzan() ﬁzseC() (18)
60, 2
R(x) V> t) = —=sech (9)) (19)
0:h,

2
where 0 = 0,x + 6,y — Do+ Didabibal o

«
In similar steps, we can change sn in (11) by cn, where ¢cn (6, §) is Jacobi elliptic cosine function, to have the
FRWE-MTD (1) as follows:

(2 — 46%) — 2464 — 62+ 1 +6_c$2

Wix, y, t) = 209, 6), 20
(%, ys 1) 7 ﬁzcn( ) (20)
_ 2\ 4 2 2
Rix, yp 1) = 2| Q40D 2N =741 68 hg s |, 1)
91 h, h,
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wh&e&::&x+—@y+—H”+m“ﬁ?J§jﬁ+”ﬂﬂm
_ 2 4 <2 2
Wi, 3, 1) = (2 — 46%) +2y6* — 62+ 1 n gmz(e’ 5),
h, hy
_ 2 4 _ <2 2
R(x’y’t):% Q@ 45)+;\/6 8241 +%m2(9’5) )
1 2 2

02 1 2
with § = 0,x + 0,y — DN DEARE 0 Ty

4.2. METF-method
We utilize here the METF-method that stated in [30]. Assuming the solution u of equation (8) has the type
M=2 M=2

u(f) = Z aij + Z ij’j =ay+ aZ+ a2+ 0 Z'+ b,Z7?,
=0 =1

where Z solves
Z' =7+ k
equation (25) has the solutions:
Z(0) = Jk tan(vkO)or Z(0) = —k cot(k ) if k > 0,
or
Z(0) = —J—k tanh(V—kO)or Z(0) = ——k coth(vV—k0) if k < 0,
or
z@0) = —Lif k=o0.
0
Substituting equation (24) into equation (8), we get
(6ay + hya)Z* + Qay + 2hy may) Z> + (8kay + 2aparhy + alhy + hyay) Z?
(2kay + hyay + 2hyapa + 2a,b))Z + (2k%ay + 2by + hyag + hyag + 2k arb,
+2hyaby) + (2kby + 2hya0by + 2hya1by + I b)) Z7Y + (8kby + 2a0bsyhi,
+bihy + hiby)Z72 + bk + 2hybiby) Z73 + (6k%b, + ha b Z* = 0.
The coefficients of each power of Z are set to zero as follows:
6a, + hyai =0,
24 + 2h, ma; = 0,
8kay + 2aparhy + alhy + hiay = 0,
2kay + hia + 2Ry apa; + 2a,b1 = 0,
2k%a, + 2by + hiag + hyal + 2haaiby + 2hyab, = 0,
2kby + 2hyagby + 2hya1by + hy by = 0,
8kby + 2agbyhy + bihy + hyby = 0,
2b1k? + 2k, by by = 0.
and
6k%b, + hy b} = 0.

We get the four separate sets by solving these equations as follows:

First set:
—6k —6
ay = ——, a4 = 0, a)y = —, b] = 0, bz = 0, w = 4k€191292.
h, 2
Second set:
2k _
ag = s, =0,a, = —6, b] =0, b2 =0, w= *4k€191292.
h, h,

(22)

(23)

249

(25)

(26)

(27)

(28)

(29)

(30)
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Third set:
— _ )
ap = 12k, a=0,a= —6) by=0,b,= ok » W= 16k51912‘92-
2 fa 2
Fourth set:
_ _Er2
ag = 8k,al—0 ay; = —6, b1:0, b2: ok ,w:714k€191202.
2 ha 2
First set: By using (29), the solution of equation (8) takes the form
u(f) = —ok _ i22(0).
2 I
For Z(0), there are many distinct cases:
Casel:When k > 0, we have by using (26)
u®) = =&~ Fan(Jko) - secZ(f ko),
hy ﬁ
and
() = =% _ % e ko) = —FK s (Vxo).
h, h; hy

Hence, the exact solutions of FRWE-MTD (1), using (6), are

W(x, y, t) = —Z—k sec2(Vk0),
2

Rx, y, t) = —%secz(\/ﬁe),
h»0,
and

W(x, y, t) = %&cscz(ﬁﬂ),

2
csc(Wk0),

Rx, y, 1) = — 6k,
5291

2
where § = 0,x + 6,y + Lo+ DEkaOibi] o

Case2:When k < 0, we have by uging (27)
u() = _ﬁék 2 tanh?(V=k6) =

2

and

u(d) = h—6k + g—k coth’(v—k0) = —cschz(\/_ﬂ)

2 2
Hence, the exact solutions of FRWE-MTD (1), using (6), are

Wix, y, t) = —— h ZOK sech’(V=F0),

R(x, y, t) = —h—;sechz(\/—kﬁ),

2U1

and

W(x, y, t) = 6—kcsc:hz(\/fk 0),

Rx, y, t) = cschz(\/ k0).
h29
Case3:When k = 0, we get by using (28)

6 1

) = ———.
u(0) e

W W Mohammed et al

(D

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)
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Therefore, the exact solutions of FRWE-MTD (1), using (6), are

—6
W(x, y, t) =
Cor )=
60,
Rix, y, 1) = —202
o D= a g

where 6 = 0,x + 0,y.

Second set: By using (30), the solution of equation (8) takes the form
—2k 6
0 —Z2(0).
u(®) = o )

For Z(6), there are many distinct cases:
Casel: When k > 0, we have by using (26)

—2k 6k
u(6) = — —tan k),

2 2
and
—2k 6k
0 — — cot’(Vk0).
u®) = <= = -co k)
Therefore, the exact solutions of FRWE-MTD (1), using (6), are
Wix, y, t) = —2k 6—ktan2(ﬁ9),
ﬁz h,
—2k0,  6kb,
R > ) )= ——— — —t 2 «/E@ >
(%, y5 1) " Too: an“(vk0)
and
W(x, y, t) = —2k _ %cotz(ﬁﬁ),
h, h,

—2k0, 6k0,
Rix, y, t) = —— — —=cot*(Vk0),
(x p, 1) ) ﬁzelco (Vk0)

2
where 0 = 0,x + O,y — W

Case2: When k < 0, one can get by using (27)

u(0) = 2k + 6—ktanh2(\/—k0),
h h»

2

and

u(®) = —2k + —cothz(\/ k).
hy h,

Therefore, the exact solutions of FRWE-MTD (1), using (6), are

W, y, 1) = =28+ K anke(V=k0),
h Tk
ok, 6k,

+ —t h2 \/%9 >
b e, (KO

Rx, y, t) =

and

W(x, y, ) = —2k + Z—kcothz(\/—kﬁ),

hy
_Zkel 6k92
Rx,,t:_+ thz\/_e
e h20, ﬁ201 ko),
where § = 6,x + 6,y — w
Case 3: When k=0, we have byusmg (28)
—61
¢ )
u(®) = TR

W W Mohammed et al

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(43)

(49)

(50)
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Solution
Solution

Solution
Solution

Time "t*

(d) a=1, 0.8, 0.6

(c) a=0.6, 0 =09

Figure 1. (a-c) present 3D-profile of the periodic solution W(x, y, t) given in equation (16) for & = 1, 0.8, 0.6 (d) shows 2D-profile

for these values of «

Consequently, the exact solutions of FRWE-MTD (1), using (6 ), are

-6

W(x, y, t) = , 51

(x, y, 1) e (51)
— 60,

Rx, y, t) = , 52

(x, y, 1) 7002 (52)

where 6 = 0,x + 0,y.
Third set: By using (31), the solution of equation (8) takes the form
_ 2
12k 8 22 - %Z*Z o).

u(d) =
ﬁZ ﬁ/Z 2

For Z(6), there are many distinct cases:
Case 1: When k > 0, we have by using (26)

u) = =2 _ a2 k) - & cor(vo)
h h #,

2 2

= fg—k[secz(\/fQ) + csc2(Vk0)].
2

Consequently, the exact solutions of FRWE-MTD (1), using (6 ), are

W(x, y, t) = —g—k[secz(\/%t?) + csc2(Vk0)], (53)
2
R 1) = =2 sec(VR0) — S ese(VRo), (54)
20, 204

2
where 0 = 0,x + 0,y + wt“.
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Solution
Solution

(b) a =08, ¢ =0.9

Solution
Solution

a=0.6

-10.2
0 05 1 15 2 25

Space "x" 0 o Time "t*
Time "t"
(¢) =06, ¢ =09 d)a=1, 08, 0.6

Figure 2. (a-c) present 3D-profile of the periodic solution R (x, y, t) given in equation (17) for §, = — 2 and fora = 1,0.8,0.6 (d)

shows 2D-shape for these values of «

Case2: When k < 0, we get by using (27)

u() = —12k 6—kt nh2(V—k6) + —cothz(\/_g)
2

= _—k[sechz(J—_k 0) — csch?(V—k6)].
2

Therefore, the exact solutions of FRWE-MTD (1), using (6), are
Wix, y, t) = _ﬁ—6k [sech?(v —k ) — csch?(v—k0)],

6k6; sechz(\/ k0) + Zkzzc ch?(v—k0),

2

R(X, }’, t) -

where 0 = 601x + O,y + wt
Case 3: When k =0, we have by using (28)
6 1
u(®) =~ g2,
O =25t 5

Consequently, the exact solution of FRWE-MTD (1), using (6), are

W(x: )2 t) = i[ﬁ + 02]

602[1 ]
Ry 1) = 22| L4 g2,
oy D=0 5

(55)

(56)

(57)

(58)

10
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Solution
Solution

Solution
= &

Solution

3]

— =]
a=0.8
a=0.6

Space "x" 0 o Time "t"

Figure 3. (a-c) present 3D-shape of the dark solution W(x, y, t) given in equation (18) for 6 = 0.5, 6,
shows 2D-profile for these values of o

0 01 02 03 04 05 06 07 08 09 1
Time "t"

(¢) a=0.6, ¢ =0.9 (d) a=1,

=—0.8anda =1,0.8,0.6(d)

0.8, 0.6

Fourth set: By using (32), the solution of equation (8) takes the form
8k 6 6k?
ud) = — — —7*0) — —Z7%(0
() n 0) — i ().

For Z(0), there are many distinct cases:
Case 1: When k > 0, we get by using (26)

2 2
u(f) = ﬁz ﬁz an?(Vk6) — cot (Vk0).

Therefore, the exact solutions of FRWE-MTD (1), using (6), are

W(x, y, t) = 8k _ %t n2(Vk6) — %cotz(ﬁe),
hy hy

8k6, 6k02 6k02
R, y, t) = - n*(Vk0 ot2(Vk ),
(x p, 1) . an?(Vk6) — (Vk0)

2
where § = 0,x + 0,y — w

Case 2: When k < 0, we have by usmg (27)
ud) = — + — tanhz(\/—k 0) + Ok coth?(v —k ).
ﬁz h, hy
Therefore, the exact solutions of FRWE-MTD (1), using (6), are
Wix, y, t) = Z—k + Zk tanh*(v —k0) + i6i_k coth’(v—k9),
2 2

2

(59)

(60)

(61)

11
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Solution
Solution

25
5
515
[=]
w

05

Solution

0
Space " 0 o Time "t" 0 01 02 03 04 05 06 07 08 09 1

(¢c) a=0.6, c=0.9 (d) a=1, 0.8, 0.6

Figure 4. (a-c) present 3D-shape of the bright solution R (x, y, t) given in equation (19) for 6 = 0.5,6, = — 0.8 and for @ = 1,0.8,
0.6 (d) shows 2D-profile for these values of v

Rix, y, 1) = K02y Ok o2 (V=k0) + 20 o2 R 0), (62)
h201 ﬁzel ﬁ291

2
where § = 0,x + b,y — Lot D00 o,

Case 3: When k= 0, we get by using (28)

611
0) = —|— + 0.
u®) = 1| 5+ 7]

Consequently, the exact solutions of FRWE-MTD (1), using (6 ), are

Wi, 3, 1) = ﬁi[% + 92], (63)
2

R _ 01 g 64

(x))/>t)*h201 ﬁ‘i’ > ( )

where 0 = 0,x + 6,y.

Remark 1. If we put 0 = 0 and o = 1inequations (37), (38), (47), (48), (49), (50), (61), and (62), then we attain
the same solutions (30), (31), (32), (33), (34), (35), (28), and (29), respectively, that stated in [ 19].

5. Graphical representations and discussion

In this paper, we acquired the exact solutions of FRWE-MTD (1) by utilizing two various techniques such as JEF-
method and METF-method. The JEF-method has provided elliptic soliton solutions. While METF-method has
provided rational, hyperbolic, and trigonometric soliton solutions. To illustrate the behavior of these solutions
and the impact of the M-truncated derivative on the obtained solutions of FRWE-MTD (1), different graphical
representations are provided. Fore; = — 0.5, &, = €53 = 0; = 1, 6, = — 2 and for varying values of o, we simulate

12
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the graphical representations for some attained solutions, including equations (16), (17), (18) and (19) as
follows:

From previous figures 1-4, we deduce that when the fractional derivative order o« of FRWE-MTD (1)
increases, the surface moves into the right side.

6. Conclusions

In this paper, we considered the Riemann wave equation with M-truncated derivative (FRWE-MTD) (1). To get
novel elliptic, rational, hyperbolic, and trigonometric function solutions, the Jacobi elliptic function approach
and the modified extended tanh function method are used. The performance of modified extended tanh
function method is reliable and effective, and it can be applied to many other nonlinear evolution equations.
Because the RWE is used in various fields, including quantum mechanics, optics, signal processing, and general
relativity, the solutions provided here are critical for understanding a variety of intriguing physical phenomena.
Moreover, the influence laws of these solutions of the Riemann wave equation cannot be overstated. Their
stability, efficiency, and versatility make solitons indispensable in modern communication systems, scientific
research, and engineering applications. By harnessing the power of solitons, researchers and engineers can
continue to push the boundaries of wave physics and develop innovative technologies that benefit society as a
whole. Furthermore, we extended some previous results such as those reported in [19]. Finally, the MATLAB
software was used to demonstrate the effect of MTD on the exact solutions of the FRWE-MTD (1). We deduced
that when the fractional derivative order of FRWE-MTD (1) increases, the surface moves into the right side. In
the future work, we can discusses the Riemann wave equation with additive noise.
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