
Physica Scripta
            

PAPER

Abundant optical soliton solutions for the
stochastic fractional fokas system using bifurcation
analysis
To cite this article: Wael W Mohammed et al 2024 Phys. Scr. 99 045233

 

View the article online for updates and enhancements.

You may also like
A sliding sequence importance resample
filtering method for rolling bearings
remaining useful life prediction based on
two Wiener-process models
Youshuo Song, Shaoqiang Xu and Xi Lu

-

A new approach to develop computer-
aided detection schemes of digital
mammograms
Maxine Tan, Wei Qian, Jiantao Pu et al.

-

Multi-objective optimization approach for
channel selection and cross-subject
generalization in RSVP-based BCIs
Meng Xu, Yuanfang Chen, Dan Wang et
al.

-

This content was downloaded from IP address 90.147.90.130 on 20/03/2024 at 09:12

https://doi.org/10.1088/1402-4896/ad30fd
/article/10.1088/1361-6501/acffe3
/article/10.1088/1361-6501/acffe3
/article/10.1088/1361-6501/acffe3
/article/10.1088/1361-6501/acffe3
/article/10.1088/0031-9155/60/11/4413
/article/10.1088/0031-9155/60/11/4413
/article/10.1088/0031-9155/60/11/4413
/article/10.1088/1741-2552/ac0489
/article/10.1088/1741-2552/ac0489
/article/10.1088/1741-2552/ac0489


Phys. Scr. 99 (2024) 045233 https://doi.org/10.1088/1402-4896/ad30fd

PAPER

Abundant optical soliton solutions for the stochastic fractional fokas
system using bifurcation analysis

WaelWMohammed1,2,∗ , ClementeCesarano3, AdelAElmandouh2,4 , Ikbal Alqsair5, Rabeb Sidaoui1 and
HessaWAlshammari1

1 Department ofMathematics, College of Science, University ofHa’il, Ha’il 2440, Saudi Arabia
2 Department ofMathematics, Faculty of Science,MansouraUniversity,Mansoura, Egypt
3 Section ofMathematics, International TelematicUniversity Uninettuno, CorsoVittorio Emanuele II, 39, 00186Roma, Italy
4 Department ofMathematics and Statistics, College of Science, King Faisal University, P. O. Box 400, Al-Ahsa 31982, Saudi Arabia
5 Department ofMathematics, College of Science, QassimUniversity, Buraydah 51482, Saudi Arabia
∗ Author towhomany correspondence should be addressed.

E-mail: wael.mohammed@mans.edu.eg and c.cesarano@uninettunouniversity.net

Keywords: fractional derivatives, nonlinear system,Wiener process, optical solitons,multiplicative noise

Abstract
In this study, the stochastic fractional Fokas system (SFFS)withM-truncated derivatives is considered.
A certainwave transformation is applied to convert this system to a one-dimensional conservative
Hamiltonian system. Based on the qualitative theory of dynamical systems, the bifurcation and phase
portrait are examined. Utilizing the conserved quantity, we construct some new travelingwave
solutions for the SFFS. Due to the fact that the Fokas system is used to explain nonlinear pulse
transmission inmono-mode opticalfibers, the given solutionsmay be applied to analyze an extensive
variety of crucial physical phenomena. To clarify the effects of theM-truncated derivative andWiener
process, the dynamic behaviors of the various obtained solutions are depictedwith 3-D and 2-D
curves.

1. Introduction

Stochastic partial differential equations (SPDEs) aremathematicalmodels that explain the behavior of random
processes in space and time. They are an extension of ordinary differential equations and partial differential
equations, which involve deterministic functions, to include randomor stochastic terms SPDEs play a crucial
role inmany scientific fields, including physics, biology, finance, and engineering, as they provide a powerful
tool for understanding complex systems that exhibit randomness [1, 2].

The applications of SPDEs are diverse and far-reaching. In physics, they are used tomodel the behavior of
complexfluids, such as turbulent flows, which exhibit randomfluctuations at small scales. Infinance, SPDEs are
employed tomodel the dynamics of stock prices, interest rates, and other financial instruments, taking into
account the uncertainty and randomness in themarket. In biology, SPDEs are used to describe the growth and
interaction of populations, where environmental factors and genetic variations introduce stochastic effects.

Solving SPDEs is a challenging task due to the interplay between randomness and spatial-temporal
dynamics. In recent years, the exact solutions for some SPDEs, for example coupledKorteweg–DeVries [3],
mKdV equation [4], Davey–Stewartson equation [5], (4+ 1)-dimensional Fokas equation [6] and etc, have been
acquired.

On the other hand, fractional partial differential equations offer a powerfulmathematical framework for
modeling complex phenomena that cannot be accurately described by traditional PDEs. By introducing
fractional derivatives, FPDEs capture non-local andmemory-like effects, enabling them to accurately represent
awide range of scientific phenomena.With implementations in physics,finance, and biomedical engineering
[7–11], FPDEs have proven to be a valuable tool for understanding and analyzing complex systems. As a result,
multiplemathematicians proposed several fractional derivatives. Themostwell-known include those suggested
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byRiemann-Liouville, Riesz, Caputo, Hadamard, two-scale fractal derivative, He’s fractional derivative,
Grunwald-Letnikov, Atangana-Baleanu’s derivative andM-truncated derivative [12–18].

Moreover, solving FPDEs remains a challenging task, requiring the development of specialized analytical
methods. In recent years, there are some effective and helpfulmethods, includingmodified simple equation
method [19],first integralmethod [20], (G G )¢ -expansionmethod [21], extended Jacobi elliptic function
expansionmethod [22], generalizing Riccati equationmappingmethod [23] ,first integralmethod [24, 25],
sine–cosine functionmethod [26], Kudryashov’smethod [27], andmultivariate bilinear neural networkmethod
[28], have been developed to solve FPDEs.

In this study, we look at the stochastic fractional Fokas system (SFFS)withM-truncated derivatives:

     i i , , 1t k xx t k y y k x1 ,
,

2 3 ,
,

4 ,
, 2(∣ ∣ ) ( )  g g s g g+ + = =a b a b a b

where k x,
,a b is theM-truncated derivative (MTD) operator, i 1= - , γ1, γ2, γ3 and γ4 are arbitrary constants.

  t( )= is the standardWiener process, 
t t
= ¶

¶
andσ is the amplitude of the noise.Whenα= 1 and

β= σ= 0, we get the Fokas system (FS) [29, 30]:

    i 0, . 2t xx y x1 2 3 4
2(∣ ∣ ) ( )g g g g+ + = =

Due to the significance of FS (1), many researchers have obtained exact solutions for this equation by using
variousmethods, including generalized Kudryashovmethod [31], simplified extended tanh-function [32], exp-
functionmethod [33], Jacobi elliptic function expansion [34, 35], sine-cosine and extended rational sinh-cosh
methods [36], modifiedmappingmethod [37], Hirota’s bilinearmethod [38], kexp( ( ))y- -expansionmethod
[39], Painlevé analysismethod [40] and newKudryashov approach [41].

The goal of this research is to get the exact fractional stochastic solutions of the SFFS (1). Based on the
qualitative theory of dynamical systems, the bifurcation and phase portrait are examined. Utilizing the
conserved quantity, we construct some new travelingwave solutions for the SFFS. Because the Fokas system is
implemented to clarify nonlinear pulse propagation inmono-mode opticalfibers, the solutions providedmay be
utilized to analyze a broad range of critical physical processes. Also, to explain the impacts of theM-truncated
derivatives andmultiplicative noise, the dynamic behaviors of the different found solutions are illustrated using
3-D and 2-D curves.

The following is how the paper is structured: In the next section, we state the definition of theWiener process
andMTD,while in section 3we derive thewave equation for the SFFS (1). In section 4, we get the one-dimension
conservativeHamiltonian system and its equilibriumpoints. In section 5, we construct some new travelingwave
solutions for the SFFS (1). In section 6, we investigate the effect of theWiener process on the solutions of SFFS
(1). Finally, the conclusion of the article is introduced.

2.Wiener process andMTD

Let us begin by defining the standardWiener process (SWP) [42]:

Definition 1.The stochastic process  s s 0{ ( )}  is known as the SWP if it fulfills:

1.  0 0.( ) =

2.  s( ) is continuous for s� 0,

3.  s s2 1( ) ( )- is independent for s1< s2,

4.  s s2 1( ) ( )- has aNormal process,

We need the next lemma for our results:

Lemma2. ([42]) e e
1
2

2( )( ) =s t s t for 0.s

Recently, Sousa et al [18] introduced theM-truncated derivative (MTD), which is a standard generalization
of the classical derivatives. They defined theMTDof orderα ä (0, 1] for : 0,[ ) ¥  as follows:


  

z
z hz z

h
lim ,k z
h

k
,
,

0

,( )
( ( )) ( )

 =
-a b b

a



-

2
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where

 x
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p 1
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,
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=
G +

b
=

for x ä C andβ> 0. MTDpossesses the following features:
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a

a b n n a

¢

-

-

where a and b are any constants.

3. TravelingWave equation for SFFS

To attain thewave equation for the SFFS (1), we use

    x y t e x y t e, , , , , ,i t t t t1
2

2 1
2

2( ) ( ) ( ) ( )( ) ( )x x= =f s s s s+ - -

with

x y t x y tand , 31
1 2 3

1
1 2 3[ ] [ ] ( )( ) ( )f f f f x x x x= + + = + +b

a
a a b

a
a aG + G +

where  and  are real and deterministic functions,fk and ξk are unknown constants for k= 1, 2, 3.We notice
that

     

  





i e

i e

1

2

1

2

, 4

t t
i t t

t
i t t

3 3
2 2

3 3

1
2

2

1
2

2

[ ]

[ ] ( )

( )

( )

x f s s s

x f s

= ¢ + + + -

= ¢ + +

f s s

f s s

+ -

+ -

where 1

2
2s+ is the Itô correction term, and

  

   

   



 



i e

e e

i e

,

, ,

2 . 5

k y
i t t

k x
t t

k y
t t

k xx
i t t

,
,

1 1

,
, 2

1
2 2

,
,

2

,
,

1
2

1 1 1
2

1
2

2

2 1
2

2

1
2

2

( )

(∣ ∣ ) ( )

( ) ( )

( )

( ) ( )

( )



 



x f

x x

x f x f

= ¢ +

= ¢ = ¢

=  + ¢ -

a b f s s

a b s s a b s s

a b f s s

+ -

- -

+ -

Inserting equations (4) and (5) into equation (1), we get for imaginary part

2 0. 61 1 1 3( ) ( )g f x x+ ¢ =

Setting that:

2 . 73 1 1 1 ( )x g f x= -

For real part

  

 





e

e

0,

. 8

t t

t t

1 1
2

3 1 1
2

2

3 2 4 1
2

1
2

2

1
2

2

( ) ( )

( ) ( )

( )

( )

g x f g f g

g x g x

 + - - + =

¢ = ¢

s s

s s

-

-

Now,we take the expectation on both sides into equation (8) to get

   e e 0, 9t t
1 1

2
3 1 1

2
2

1
2

2( ) ( ) ( ) ( )( )g x f g f g + - - + =s s-

and

  e e . 10t t
3 2 4 1

2 1
2

2( ) ( ) ( )( )g x g x¢ = ¢ s s-

Using lemma 2, then equations (9- 10) turn into

   0, 111 1
2

3 1 1
2

2( ) ( ) ( )g x f g f g + - - + =

and

  . 123 2 4 1
2( ) ( )g x g x¢ = ¢

3
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Integrating (12) once and ignoring the integral constant, we have

  . 134 1

3 2

2 ( )
g x
g x

=

Substituting equation (13) into equation (11), we get

  A B 0, 143 ( ) - - =

where

A Band .2 4

3 1 1 2

3 1 1
2

1 1
2

g g
g g x x

f g f

g x
=

-
=

+

4.Hamiltonian system andphase portrait

Eq.(14) is rewritten as a systemof first-order differential equations in the form

  Z Z A B, . 153 ( )¢ = ¢ = +

This system is aHamiltonian systembecause it can be driven by usingHamilton canonical equations with a
Hamiltonian function in the form

 H Z
A B1

2 4 2
. 162 4 2 ( )= - -

Due to 0H =
x

¶
¶

, theHamiltonian itself is a conserved quantity and it admits the form

 Z
A B

C
1

2 4 2
, 172 4 2 ( )- - =

Figure 1.Phase portrait for theHamiltonian system (15). The cyan solid point refers to the equilibriumpoint.

4
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whereC is an arbitrary constant. Inserting thefirst equation in the system (15) into the conserved quantity and
separating the variables, we get the one-dimension differential form




d

Q
d2 , 18

( )
( )x=

where Q ( ) is quartic polynomial admitting the form

  Q C
A B

4 2
. 194 2( ) ( )= + +

The range of the parametersA,B,C is required for the integration of both sides of equation (18).We apply
bifurcation analysis whichwas successfully applied in several works such as [43–46] to obtain this range. The
bifurcation theory hasmany advantages such as it enables us to determine the type of the solutions before
constructing themby employing the phase plane orbits and it helps us to form real and bounded solutions, that
are desirable in real-world applications, by selecting possible intervals of real wave propagations. Thismethod is
easily applicable toHamiltonian systemswith small degrees of freedom. Its application becomes somewhat
difficult as degrees of freedom increase, but themethod is still applicable.

The equilibriumpoints (EQPs) for theHamiltonian system (15) are acquired by setting  Z0¢ = = ¢. They
are  , 00( ), where 0 satisfies the equation  A B 00

3
0+ = . Thus, system (15)has a single equilibriumpoint

O= (0, 0) ifBA> 0, while it possess three EQPs O P0, 0 , , 0B

A
( ) ( )= = 

- ifBA< 0. The determinant of

the Jacobimatrix corresponding to theHamiltonian system (15) has the form

 A Bdet J , 0 3 . 200 0
2[ ( )] ( )= +

According to the qualitative theory for planar integrable system [47], the equilibriumpoint  , 00( ) is either
saddle point if det J , 0 00[ ( )] < or center point if det J , 0 00[ ( )] > , or cusp point if det J , 0 00[ ( )] =
besides the poincaré index of the equilibriumpoint is zero. Consequently, the unique equilibriumpointO is
center ifA< 0,B< 0 and it is saddle ifB> 0,A> 0 . The EQPsO andP± are either center and saddle forB< 0,

Figure 2. (a)–(c) present the 3D-profile of the solution  x y t, ,( ) to equation (33)withσ = 0 and various values ofα = 1, 0.8, 0.6 (d)
illustrates a two-dimensional diagram for theseα values.
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A> 0 or saddle and center ifB> 0,A< 0. To describe the phase portrait, we calculate the value of the constantC
at the EQPs, i.e.,

C H O C H P
B

A
0,

4
. 210 1

2

( ) ( ) ( )= = = =

The phase plan orbits are one parameter family which is parameterized by the constantC and it admits the form

  Z Z Q, : 2 . 22C
2 2{( ) ( )} ( )= Î =

Wenow give a short description of the phase portrait.

• For A B,( )  Î ´- -, the system (15) possesses a family of bounded phase orbits,C 0> , around the centre
pointO.WhileC 0= , represents the equilibriumpointO. This is outlined infigure 1(a).

• If A B,( )  Î ´+ +, the phase portrait Includes three distinct unbounded families of phase orbits
depending on the value ofC. Two families of unbounded orbits in blue,C 0> and in greenC 0< . Both
families are separated by the orbitC 0= in red as clarified by figure 1(b).

• For A B,( )  Î ´+ -, the phase portrait for the equation (15) is described by figure 1(c). IfCä ]0,C1[ ,
there are three families of orbits in green.One of them is the bounded periodic family appearing inside the
heteroclinic orbitC C1= in redwhile the others are unbounded and they are placing outside the heteroclinic
orbit. There is two unbounded families of orbits in blueC C1> , a single in brownC 0= , and twounbounded
familiesC 0< in pink exists.

• For A B,( )  Î ´- +, the phase plane consists of bound orbits only as it is illustrated byfigure 1(d). There is
a family of supper periodic orbits in blueC 0> . There are two periodic families of orbits in greenC 0< and
each of them is placed inside the right and left ovals of the homoclinic orbitC 0= in red.

Figure 3. (a)–(c) present the 3D-profile of  x y t, ,( ) presented in equation (34)withσ = 0 and various values ofα = 1, 0.8, 0.6 (d)
illustrates a two-dimensional diagram for theseα values.

6
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5. Construction of the solutions

Depending on the bifurcation conditions of the parameters, and selecting the possible interval of real wave
propagation, we introduce some solutionswhich are connected to bounded phase plan orbits.

1. For selecting values of A, B, and C that satisfy the condition A B C, , 0,( ) ] [ Î ´ ´ ¥- - , the system
(15)has a family of periodic orbits each of them cuts -axis in two points. This proves the quartic
polynomial Q ( ) has only two real roots and hence, it takes the form   Q r rA

4 1
2 2

2
2 2( ) ( )( )= - - + . The

interval of real wave propagation is  r r,1 1] [Î - . Assuming  r0 1( ) = - , the integration of both sides of
equation (18) provides

⎜ ⎟
⎛
⎝

⎞
⎠

 r
A

r r
r

r r
cn

2
, . 231 1

2
2
2 1

1
2

2
2

( ) ( ) ( )x x= -
-

+
+

Consequently, the solution of SFFS (1) is

⎜ ⎟
⎛
⎝

⎞
⎠

 x y t r
A

r r
r

r r
e, , cn

2
, , 24i t t

1 1
2

2
2 1

1
2

2
2

1
2

2( ) ( ) ( )( )x= -
-

+
+

f s s+ -

⎜ ⎟
⎛
⎝

⎞
⎠

 x y t
r A

r r
r

r r
e, , cn

2
, . 25t t4 1 1

2

3 2

2
1
2

2
2 1

1
2

2
2

1
2

2( ) ( ) ( )( )g x
g x

x=
-

+
+

s s-

2. For A B,( )  Î ´+ -, we have two possible choices according to the values ofC as follows:

(a) whenC< C1, there are three families of orbits in green. A single orbit of them intersects  in four points.
This shows the polynomialQ has four real roots, namely,±r3,± r4. Then, it is written as
  Q r rA

2 3
2 2

4
2 2( ) ( )( )= - - , where r3< r4. The interval of real wave propagation is

Figure 4. (a)–(c) display the 3D-profile of  x y t, ,( ) presented in equation (36)withσ = 0 and distinctα = 1, 0.8, 0.6 (d) illustrates a
two-dimensional diagram for theseα values.
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 r r r r, , ,3 3 4 4] [ ] [ ] [È ÈÎ - ¥ - ¥ . Assuming  r0 3( ) = - and integrating both sides of
equation (18), we obtain

 r r
A r

r
cd

2
, . 263 4

3

4

( ) ( ) ( )x x= 

Therefore, the SFFS (1)has the solution

 x y t r r
A r

r
e, , cd

2
, , 27i t t

3 4
3

4

1
2

2( ) ( ) ( )( )x=  f s s+ -

 x y t
r

r
A r

r
e, , cd

2
, . 28t t4 1 3

2

3 2

2
4

3

4

1
2

2( ) ( ) ( )( )g x
g x

x= s s-

(b) When C= C1, the system has a heteroclinic orbit which connects the two saddle points. The quartic
polynomial (19) has the - component of the equilibriumpoints as the roots. It is expressed as

 Q A B

A4
2

2( )) (= + . The possible interval of bounded real wave propagation is  ,B

A

B

A
] [Î - .

Postulating  0 0( ) = , the integration of both sides of equation (18) provides


B

A

B
tan

2
. 29( ) ( )x x=

Consequently, the solution of the SFFS (1) is

 x y t
B

A

B
e, , tan

2
, 30i t t1

2
2( ) ( )( )x= f s s+ -

Figure 5. (a)–(c) display the 3D-profile of  x y t, ,( ) presented in equation (37)withσ = 0 and various values ofα = 1, 0.8, 0.6 (d)
illustrates a two-dimensional diagram for theseα values.
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 x y t
B

A

B
e, , tan

2
. 31t t4 1

3 2

2 1
2

2( ) ( )( )g x
g x

x= s s-

3. For A B,( )  Î ´- +, we have three possible cases according to the value ofC:

(a) The system (15) has a family of supper-periodic orbits when C> 0. Any orbit of this family - axis in
exactly two points. Therefore, the polynomial Q ( ) has two real roots, i.e.,
  Q r rA

4 5
2 2

6
2 2( ) ( )( )= - - + . The interval of real wave propagation is  r r,5 5] [Î - . Assuming

 r0 5( ) = , the integration of both sides of Eq.(18) implies to

⎛

⎝
⎜

⎞

⎠
⎟ r

A
r r

r

r r
cn

2
, . 325 5

2
6
2 5

5
2

6
2

( ) ( ) ( )x x=
-

+
+

Hence, the solution of SFFS (1) has the form

⎛

⎝
⎜

⎞

⎠
⎟ r

A
r r

r

r r
ecn

2
, , 33i t t

5 5
2

6
2 5

5
2

6
2

1
2

2( ) ( )( )x=
-

+
+

f s s+ -

⎛

⎝
⎜

⎞

⎠
⎟ r A

r r
r

r r
ecn

2
, . 34t t4 1 5

2

3 2

2
5
2

6
2 5

5
2

6
2

1
2

2( ) ( )( )g x
g x

x=
-

+
+

s s-

(b) ForC= 0, the system (15) has homoclinic orbit which cuts - axis in three point.Hence the polynomial
Q possesses three real roots; one is repeated twice while the others are simple. So, wewrite
  Q A B

A4
2 2 2( ) ( )= - - - . The intervals of permittedwave propagation are

Figure 6. (a)–(c) display the 3D-profile of  x y t, ,( ) presented in equation (33) for distinct values ofσ = 0, 1, 2 (d) depicts a 2D
graph for theseσ values.
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 , 0 0,B

A

B

A

2 2] [ ] [ÈÎ - - - . Let  0 B

A

2( ) = - and integrating both sides of equation (18), we have

⎜ ⎟
⎛
⎝

⎞
⎠


B

A

A2
sech

2
. 35( ) ( )x x=

- -

Consequently, the solution of the SFFS (1) is

⎜ ⎟
⎛
⎝

⎞
⎠

 x y t
B

A

A
e, ,

2
sech

2
, 36i t t1

2
2( ) ( )( )x=

- - f s s+ -

⎜ ⎟
⎛
⎝

⎞
⎠

 x y t
B

A

A
e, ,

2
sech

2
. 37t t4 1

3 2

2 1
2

2( ) ( )( )g x
g x

x=
- - s s-

(c) The system (15) owns two families of periodic orbits in which any orbit of this family cuts - axis in four
points. Thismeans the quartic polynomial (19) has four real roots. Consequently,
  Q r rA

4 7
2 2 2

8
2( ) ( )( )= - - - , where 0< r7< r8. The intervals of real wave propagation are

 r r r r, ,7 8 8 7] [ ] [ÈÎ - - . Assuming  r0 7( ) = , the integration of both sides of equation (18) produces

⎛

⎝
⎜

⎞

⎠
⎟ r

A r

r
nd

2
, 1 . 387

7
2

8
2

( ) ( )x x=
-

-

So, the solution of the SFFS (1) is

⎛

⎝
⎜

⎞

⎠
⎟ x y t r

A r

r
e, , nd

2
, 1 , 39i t t

7
7
2

8
2

1
2

2( ) ( )( )x=
-

- f s s+ -

Figure 7. (a)–(c) display the 3D-profile of  x y t, ,( ) presented in equation (34) for distinct values ofσ = 0, 1, 2 (d) shows a 2D
graph for theseσ values.
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⎛

⎝
⎜

⎞

⎠
⎟ x y t

r A r

r
e, , nd

2
, 1 . 40t t4 1 7

2

3 2

2 7
2

8
2

1
2

2( ) ( )( )g x
g x

x=
-

- s s-

6. Impacts of noise andMTD

Weexamine the influence of theMTD and the stochastic termon the analytical solutions of the SFFS (1). To
show the behavior of these solutions, numerous graphical representations are provided. For varying values of
σ (amplitude of noise) andα (the order of derivatives), we simulate a number offigures for attained solutions,
for example, equations (33), (34), (36) and (37).

Impacts ofMTD: Infigures 2, 3, 4 and 5 ifσ= 0, we notice that the shape of the graph is shrinking as the value
ofα increases:

Aswe can see infigures 2, 3, 4, and 5, the solution curves do not intersect. Additionally, the curves shrink
when the order of the derivative increases.

Impact of the noise: The impact of noise on the solutions is seen infigures 6, 7, 8 and 9 as follows:
From figures 5, 6, 7, and 8, wemay infer thatwhen the noise is ignored (i.e. atσ= 0), there are various

solutions, such as periodic solutions, kinked solutions, and others. As shown by the 2D graph, the addition of
noise with an amplitude ofσ= 1, 2 causes the surface to become significantly flattened after tiny transit patterns.
This indicates that when the stochastic term is included, the solutions of SFFS (1) converge to zero.

7. Conclusions

In this paper, the stochastic fractional Fokas system (SFFS)withM-truncated derivatives. Utilizing the
conserved quantity, we constructed somenew travelingwave solutions for the SFFS (1). These solutions can

Figure 8. (a)–(c) display the 3D-profile of  x y t, ,( ) presented in equation (36) for distinct values ofσ = 0, 1, 2 (d) shows a 2D
graph for theseσ values.
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clarify a variety of fascinating and intricate physical phenomena due to the use of the Fokas system in describing
nonlinear pulse propagation inmono-mode optical fibers. Additionally, themultiplicative noise has an impact
on the analytical solution of SFFS (1).We deduced that themultiplicative noise stabilizes solutions at zero.On
the other side, we noticed that theM-truncated derivatives shrink the surface as the order of derivative
α increases.

The bifurcationmethodwhich has been employed tofind the solutions is successfully and easily applicable
tofind the solution of PDEs and its extension to SFPDEswhen the reduced ordinary differential equation is
expressed as one-dimensionalHamiltonian system. The difficulty if its application arises when the dimension of
suchHamiltonian system increases because it requires investigation the integrability of theHamiltonian system
and constructing the additional integrals ofmotionwhich is not an easy task.
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