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Abstract

In this study, the stochastic fractional Fokas system (SFFS) with M-truncated derivatives is considered.
A certain wave transformation is applied to convert this system to a one-dimensional conservative
Hamiltonian system. Based on the qualitative theory of dynamical systems, the bifurcation and phase
portrait are examined. Utilizing the conserved quantity, we construct some new traveling wave
solutions for the SFES. Due to the fact that the Fokas system is used to explain nonlinear pulse
transmission in mono-mode optical fibers, the given solutions may be applied to analyze an extensive
variety of crucial physical phenomena. To clarify the effects of the M-truncated derivative and Wiener
process, the dynamic behaviors of the various obtained solutions are depicted with 3-D and 2-D
curves.

1. Introduction

Stochastic partial differential equations (SPDEs) are mathematical models that explain the behavior of random
processes in space and time. They are an extension of ordinary differential equations and partial differential
equations, which involve deterministic functions, to include random or stochastic terms SPDEs play a crucial
role in many scientific fields, including physics, biology, finance, and engineering, as they provide a powerful
tool for understanding complex systems that exhibit randomness [1, 2].

The applications of SPDEs are diverse and far-reaching. In physics, they are used to model the behavior of
complex fluids, such as turbulent flows, which exhibit random fluctuations at small scales. In finance, SPDEs are
employed to model the dynamics of stock prices, interest rates, and other financial instruments, taking into
account the uncertainty and randomness in the market. In biology, SPDEs are used to describe the growth and
interaction of populations, where environmental factors and genetic variations introduce stochastic effects.

Solving SPDEs is a challenging task due to the interplay between randomness and spatial-temporal
dynamics. In recent years, the exact solutions for some SPDEs, for example coupled Korteweg—De Vries [3],
mKdV equation [4], Davey—Stewartson equation [5], (4 + 1)-dimensional Fokas equation [6] and etc, have been
acquired.

On the other hand, fractional partial differential equations offer a powerful mathematical framework for
modeling complex phenomena that cannot be accurately described by traditional PDEs. By introducing
fractional derivatives, FPDEs capture non-local and memory-like effects, enabling them to accurately represent
awide range of scientific phenomena. With implementations in physics, finance, and biomedical engineering
[7-11], FPDEs have proven to be a valuable tool for understanding and analyzing complex systems. As a result,
multiple mathematicians proposed several fractional derivatives. The most well-known include those suggested
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by Riemann-Liouville, Riesz, Caputo, Hadamard, two-scale fractal derivative, He’s fractional derivative,
Grunwald-Letnikov, Atangana-Baleanu’s derivative and M-truncated derivative [12—-18].

Moreover, solving FPDEs remains a challenging task, requiring the development of specialized analytical
methods. In recent years, there are some effective and helpful methods, including modified simple equation
method [19], first integral method [20], (G/G’) -expansion method [21], extended Jacobi elliptic function
expansion method [22], generalizing Riccati equation mapping method [23], first integral method [24, 25],
sine—cosine function method [26], Kudryashov’s method [27], and multivariate bilinear neural network method
[28], have been developed to solve FPDEs.

In this study, we look at the stochastic fractional Fokas system (SFFS) with M-truncated derivatives:

iV + NDPLY + XY = ioIW, D)X, = uDEl(VP), (1)
where ]D)gj is the M-truncated derivative (MTD) operator, i = ~/—1, 71,72, 73 and -y, are arbitrary constants.

W = WI(t) is the standard Wiener process, W, = {;_11\1 and o is the amplitude of the noise. When av = 1 and

8 = o = 0, we get the Fokas system (FS) [29, 30]:

iV + NV + 12XV =0, 13X, = u(YP)x. (2)

Due to the significance of FS (1), many researchers have obtained exact solutions for this equation by using
various methods, including generalized Kudryashov method [31], simplified extended tanh-function [32], exp-
function method [33], Jacobi elliptic function expansion [34, 35], sine-cosine and extended rational sinh-cosh
methods [36], modified mapping method [37], Hirota’s bilinear method [38], exp(—1) (k)) -expansion method
[39], Painlevé analysis method [40] and new Kudryashov approach [41].

The goal of this research is to get the exact fractional stochastic solutions of the SFFS (1). Based on the
qualitative theory of dynamical systems, the bifurcation and phase portrait are examined. Utilizing the
conserved quantity, we construct some new traveling wave solutions for the SFFS. Because the Fokas system is
implemented to clarify nonlinear pulse propagation in mono-mode optical fibers, the solutions provided may be
utilized to analyze a broad range of critical physical processes. Also, to explain the impacts of the M-truncated
derivatives and multiplicative noise, the dynamic behaviors of the different found solutions are illustrated using
3-Dand 2-D curves.

The following is how the paper is structured: In the next section, we state the definition of the Wiener process
and MTD, while in section 3 we derive the wave equation for the SFFS (1). In section 4, we get the one-dimension
conservative Hamiltonian system and its equilibrium points. In section 5, we construct some new traveling wave
solutions for the SFFS (1). In section 6, we investigate the effect of the Wiener process on the solutions of SFFS
(1). Finally, the conclusion of the article is introduced.

2. Wiener process and MTD
Let us begin by defining the standard Wiener process (SWP) [42]:
Definition 1. The stochastic process {WW(s)} ;¢ is known as the SWP if it fulfills:

1. W(0) = 0.

2. W(s) is continuous for s > 0,

3. W(s,) — W(s)) isindependent for s, < s,,
4. W(sy) — WI(sy) hasaNormal process,

We need the nextlemma for our results:
Lemma 2. ([42]) B(e”V) = 297 for o > 0.

Recently, Sousa et al [ 18] introduced the M-truncated derivative (MTD), which is a standard generalization
of the classical derivatives. They defined the MTD of order « € (0, 1] for U: [0, c0) — R as follows:

D2O24(z) = lim UzExphz™)) — U(Z),
kz h—0 h
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where
k

xP
Eiplx) = ; m,
forx € Cand (3 > 0. MTD possesses the following features:
(1) DY au + bv) = aDl(u) + DL (),
) DY o v)(z) = u' (v(@) DL v(2),
3) Dz’f(w) = uﬂ])ji’fv + V]D)Z’Zﬂu,

, I=a gy
4) DP ==z 2
(4) D (w)(2) TG ) de
Dol () = v v—a
(5) DY) TG+ 1)Z

where a and b are any constants.

3. Traveling Wave equation for SFFS

To attain the wave equation for the SFES (1), we use
V@, y, 1) = U et TVO7 X(x, y, 1) = W(Ee?VI 72,
with
¢ = T [Gx + 6y + ¢t and € = HED G + 601 + &1, 3)

where U/ and V are real and deterministic functions, ¢ and & are unknown constants for k = 1, 2, 3. We notice
that

. 1 1 .
Vo= &GU + idsU + oUW, + Zo U — 502u1e1¢+”W<f>—%”2f
=[&U + ig5U + oUW etV O27, )
where —|—%02U is the It6 correction term, and
DY = (U + i Ui+ VO L,
]D)t]j,f(lylz) — é‘l(UZ)/eZUW(t)fo'zt, ]IDZ’}‘?X _ fzveaW(t)f%azt’

DYy = (GU' + 2ip U — pfU) eV O%, (5)
Inserting equations (4) and (5) into equation (1), we get for imaginary part
Cme & + U = 0. (6)
Setting that:
&= 29§ )
For real part

DU + (—¢5 — MPIDU + 1UVe? VO3 = 0,
Y6,V = n&(UD e?VO—30, ®

Now, we take the expectation on both sides into equation (8) to get

MEU" + (=65 = MIDU + 1UVe 27 B(e™™Y) = 0, ©)
and
BEV = UG U e 7 BTV, (10)
Usinglemma 2, then equations (9- 10) turn into
MU' + (=5 — moPU + UV = 0, (11)
and
1EY = nE U (12)
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Figure 1. Phase portrait for the Hamiltonian system (15). The cyan solid point refers to the equilibrium point.

Integrating (12) once and ignoring the integral constant, we have

y= 2y
1382
Substituting equation (13) into equation (11), we get
U — AU?> — BU =0,
where
_ + 2
A= ﬂ and B = Lﬂ};gﬁl.
RERILSTS ’Ylfl

4. Hamiltonian system and phase portrait

Eq.(14) is rewritten as a system of first-order differential equations in the form
U =2z, Z' = AU® + BU.

This system is a Hamiltonian system because it can be driven by using Hamilton canonical equations with a

Hamiltonian function in the form

H= Lz Ay gu%

2 4
Dueto %—? = 0, the Hamiltonian itself is a conserved quantity and it admits the form
1 A B
—Z? - Ut — =U*=C,
2 4 2

13)

(14)

15)

(16)

7)
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Solution
Solution

Space "x" 0 o Time "t* Space "x" 0 o Time *t*

(a) o =0, 6=0, a=1 (b)o =0, =09, a=0.8

22 =

—_—t
a=08
2 [ a=06 {

0.8 \'
Space "x" 0 o Time "t* 060 1 2 3 4 5 6 7 8
Space "x"
(c)o=0,3=09, a=06 (d)o=0, a=1, 0.8, 0.6

Figure 2. (a)—(c) present the 3D-profile of the solution Y(x, y, t) to equation (33) with 0 = 0 and various values of o = 1, 0.8, 0.6 (d)
illustrates a two-dimensional diagram for these a values.

where Cis an arbitrary constant. Inserting the first equation in the system (15) into the conserved quantity and
separating the variables, we get the one-dimension differential form

du

A _ e, (18)
NQ)
where Q (I/) is quartic polynomial admitting the form
QU) =C+ %ZJ‘* + gw. (19)

The range of the parameters A, B, Cis required for the integration of both sides of equation (18). We apply
bifurcation analysis which was successfully applied in several works such as [43—46] to obtain this range. The
bifurcation theory has many advantages such as it enables us to determine the type of the solutions before
constructing them by employing the phase plane orbits and it helps us to form real and bounded solutions, that
are desirable in real-world applications, by selecting possible intervals of real wave propagations. This method is
easily applicable to Hamiltonian systems with small degrees of freedom. Its application becomes somewhat
difficult as degrees of freedom increase, but the method is still applicable.

The equilibrium points (EQPs) for the Hamiltonian system (15) are acquired by setting i = 0 = Z’. They
are (Up, 0), where U, satisfies the equation AU + BU, = 0. Thus, system (15) has a single equilibrium point

O =(0,0)if BA > 0, while it possess three EQPs O = (0, 0), P. = (£ % , 0)if BA < 0. The determinant of
the Jacobi matrix corresponding to the Hamiltonian system (15) has the form
det [J(Uop, 0)] = 3AU} + B. (20)

According to the qualitative theory for planar integrable system [47], the equilibrium point (U, 0) is either
saddle point if det [J(Uy, 0)] < 0 or center pointif det [J(Uy, 0)] > 0, or cusp pointif det [J(Uy, 0)] = 0
besides the poincaré index of the equilibrium point is zero. Consequently, the unique equilibrium point O is
centerif A < 0, B < 0anditissaddleif B> 0,A > 0.The EQPs O and P are either center and saddle for B < 0,
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Space "x" 0 o Time "t*

(b)o =0, =09, a=0.8

Solution

Space "x* 0 o Time "t*
Space "x"

(c)o=0, B=09, a=0.6 (d)o=0, a=1, 08, 0.6

Figure 3. (a)—(c) present the 3D-profile of X(x, y, t) presented in equation (34) with 0 = 0 and various values of & = 1,0.8,0.6 (d)
illustrates a two-dimensional diagram for these o values.

A > 0orsaddleand centerif B > 0, A < 0. To describe the phase portrait, we calculate the value of the constant C
atthe EQPs, i.e.,

2
Co=H(0) =0, C=HP)= %. Q1)

The phase plan orbits are one parameter family which is parameterized by the constant C and it admits the form
Mc ={U, Z) € R: 722 =2QU)}. (22)
We now give a short description of the phase portrait.

+ For (A, B) € R~ x R, thesystem (15) possesses a family of bounded phase orbits, Mc-., around the centre
point O. While M_, represents the equilibrium point O. This is outlined in figure 1(a).

« If (A, B) € RT x R*,the phase portrait Includes three distinct unbounded families of phase orbits
depending on the value of C. Two families of unbounded orbits in blue, Mc~ ¢ and in green Mc_,. Both
families are separated by the orbit M¢_ in red as clarified by figure 1(b).

+ For (A, B) € RT x R, the phase portrait for the equation (15) is described by figure 1(c). If C € 10, Cy[,
there are three families of orbits in green. One of them is the bounded periodic family appearing inside the
heteroclinic orbit M¢_¢, in red while the others are unbounded and they are placing outside the heteroclinic
orbit. There is two unbounded families of orbits in blue M- ;, a single in brown M_, and two unbounded
families M in pink exists.

+ For (A, B) € R~ x R, the phase plane consists of bound orbits only as it is illustrated by figure 1(d). There is
a family of supper periodic orbits in blue M- . There are two periodic families of orbits in green M. and
each of them is placed inside the right and left ovals of the homoclinic orbit Mc_g in red.

6
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Solution
Solution

(b) o =0, =109, a =0.8

S

Solution
Solution

1 15 2 25 3
Space "x"

(d)o=0, a=1, 0.8, 0.6

0 05

(¢c)o=0, =09, a=0.6

Figure 4. (a)—(c) display the 3D-profile of Y(x, y, t) presented in equation (36) with o = 0 and distinct & = 1,0.8, 0.6 (d) illustrates a

two-dimensional diagram for these v values.

5. Construction of the solutions

Depending on the bifurcation conditions of the parameters, and selecting the possible interval of real wave
propagation, we introduce some solutions which are connected to bounded phase plan orbits.

For selecting values of A, B, and C that satisfy the condition (A, B, C) € R~ x R~ x ]0, oo[, the system
(15) has a family of periodic orbits each of them cuts {/— axis in two points. This proves the quartic
polynomial Q (I/) has only two real roots and hence, it takes the form Q (/) = —%(rl2 — U (13 + UP).The
interval of real wave propagationis U € | — n, n[. Assuming U(0) = —rn, the integration of both sides of

—A n
Uo = —n Cn(,/T(ﬁz + )& TETIQZ) (23)

Consequently, the solution of SFFS (1) is

—A i : L
V(x, y,t) = —ncn \/m , ——— |ei¢ oW =507 24)
y> t) i S )& flz n r22 (
74611’12 ) —A 2 2 n W) — L2
X,y 1) = n?| [ + )& 5 e, (25)
3¢, 2 LY a2

2. For (A, B) € Rt x R, wehave two possible choices according to the values of Cas follows:

equation (18) provides

(a) when C < Cy, there are three families of orbits in green. A single orbit of them intersects I/ in four points.
This shows the polynomial Q has four real roots, namely, &3, £ r,. Then, it is written as
Q) = %(@2 — U (1} — UP), wherers < ry. The interval of real wave propagation is

7
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Solution
Solution

1
Space X" L Time "t*

(b)co =0, =09, a=0.8

Solution

a=0.6

1 1.5 2 25 3

Space "X 0 o Time “t" 0 05
Space "x"

(c)o=0, 3=0.9, a =06 (d)o=0, a=1, 0.8, 0.6

Figure 5. (a)—(c) display the 3D-profile of X(x, y, t) presented in equation (37) with o = 0 and various values of &« = 1, 0.8, 0.6 (d)
illustrates a two-dimensional diagram for these o values.

Uel—rn, Ul co[U] — oo, r4[. Assuming U(0) = —r; and integrating both sides of
equation (18), we obtain

A
UE) = £rcd(ry \/; I3 73 ) (26)

4

Therefore, the SFFES (1) has the solution
A LB oW - Lo
V(x, y, t) = £rcd(ny 35, r—)e 207t 27)
4
2

Xx, y, 1) = 745—1’3«12(@\/5 & 2yemoioh, (28)

13, 2 Ty

(b) When C= C, the system has a heteroclinic orbit which connects the two saddle points. The quartic
polynomial (19) has the Z/— component of the equilibrium points as the roots. It is expressed as

Q (Z/{ ) = %(% + L{Z)Z. The possible interval of bounded real wave propagationis U € | — \/g , \/g [.
Postulating 2/(0) = 0, the integration of both sides of equation (18) provides

ueg = Etan \/? (29)

Consequently, the solution of the SFES (1) is

y(x’ ¥, ) = %tan g ei¢+aW(t)—%UZt’ (30)
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Solution

Solution

Space "x* 0 o Time "t"
Time "t*

(c)o=2, =0, a=1 (d)o=0,1, 2

Figure 6. (a)—(c) display the 3D-profile of Y(x, y, t) presented in equation (33) for distinct values of o = 0, 1, 2 (d) depictsa 2D
graph for these o values.

B 1
X(x, y, 1) = ﬁtanz Egeaw(t)—iazt. 31)
Y364 V2

3. For (A, B) € R~ x R*, wehave three possible cases according to the value of C:

(2) The system (15) has a family of supper-periodic orbits when C > 0. Any orbit of this family /— axis in
exactly two points. Therefore, the polynomial Q (/) has two real roots, i.e.,
QW) = —%(rs2 — UH (1} + U). Theinterval of real wave propagationis U € ] — 15, 15[. Assuming
U(0) = rs, the integration of both sides of Eq.(18) implies to

UE) = rsen {§@+é (32)

,
6|
15 + 135

Hence, the solution of SFFS (1) has the form

Y= ren| |20 + ), —=B [eieroriton, (33)
g i+ 1

2
X = RSL cn? i(rsz + 12 eI —30% (34)

15
)6 ——
136, 2 2+ 72

(b) For C= 0, the system (15) has homoclinic orbit which cuts {/— axis in three point. Hence the polynomial
Qpossesses three real roots; one is repeated twice while the others are simple. So, we write
QU) = - %L{ 2(— % — U?). Theintervals of permitted wave propagation are

9



I0OP Publishing Phys. Scr. 99 (2024) 045233 W W Mohammed et al

Solution
Solution

Solution
Solution

Space "x" 0 o Time "t"
Time "

(c)o=2 8=0, a=1 (d)o=0, 1, 2

Figure 7. (a)—(c) display the 3D-profile of X(x, y, t) presented in equation (34) for distinct values of o = 0, 1, 2 (d) shows a2D
graph for these o values.

Uel- 1/ , 0[J]o, = [ Let U(0) = 4/ 5 and integrating both sides of equation (18), we have

—2B —A
Z/{(é)—\/ 1 sech(\/Tﬁ). (35)

Consequently, the solution of the SFES (1) is

y(x) )/, t) = _jB Sech( %g)eiiﬁ‘l’UW(t)—égzt, (36)
Xx, y, 1) = 7451 (\/ 5) W)~ Lo (37)

(¢) The system (15) owns two families of periodic orbits in which any orbit of this family cuts /— axis in four
points. This means the quartic polynomial (19) has four real roots. Consequently,
Q) = —%(r72 —UHWU? — r82), where 0 < r; < rg. The intervals of real wave propagation are
U € 1ry, s[U] — 13, —r7[. Assuming U(0) = 1, the integration of both sides of equation (18) produces

ue) = r7nd( / & |1 — —] (38)

So, the solution of the SFES (1) is

V(x, y, t) = 1’7nd( —, ] l¢+aW(t)——z72t (39)

10
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Solution

Solution

1 15 2
Time "t*

(d)o=0,1, 2

Figure 8. (a)—(c) display the 3D-profile of Y(x, y, t) presented in equation (36) for distinct values of ¢ = 0, 1,2 (d) shows a2D

graph for these o values.
2 2
X(x, y, t) = n&n nd? {jf, 1 — 72 |eow-1o, (40)
738, 2 g

6. Impacts of noise and MTD

We examine the influence of the MTD and the stochastic term on the analytical solutions of the SFES (1). To
show the behavior of these solutions, numerous graphical representations are provided. For varying values of
o (amplitude of noise) and « (the order of derivatives), we simulate a number of figures for attained solutions,
for example, equations (33), (34), (36) and (37).

Impacts of MTD: In figures 2, 3, 4 and 5 if o = 0, we notice that the shape of the graph is shrinking as the value
of v increases:

Aswe can see in figures 2, 3,4, and 5, the solution curves do not intersect. Additionally, the curves shrink
when the order of the derivative increases.

Impact of the noise: The impact of noise on the solutions is seen in figures 6, 7, 8 and 9 as follows:

From figures 5, 6, 7, and 8, we may infer that when the noise is ignored (i.e. at ¢ = 0), there are various
solutions, such as periodic solutions, kinked solutions, and others. As shown by the 2D graph, the addition of
noise with an amplitude of o = 1, 2 causes the surface to become significantly flattened after tiny transit patterns.
This indicates that when the stochastic term is included, the solutions of SFFS (1) converge to zero.

7. Conclusions

In this paper, the stochastic fractional Fokas system (SFFS) with M-truncated derivatives. Utilizing the
conserved quantity, we constructed some new traveling wave solutions for the SFFS (1). These solutions can

11
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Figure 9. (a)—(c) present the 3D-profile of X(x, y, t) presented in equation (37) for distinct values of o = 0, 1, 2 (d) shows a 2D
graph for these o values.

clarify a variety of fascinating and intricate physical phenomena due to the use of the Fokas system in describing
nonlinear pulse propagation in mono-mode optical fibers. Additionally, the multiplicative noise has an impact
on the analytical solution of SFFS (1). We deduced that the multiplicative noise stabilizes solutions at zero. On
the other side, we noticed that the M-truncated derivatives shrink the surface as the order of derivative

« increases.
The bifurcation method which has been employed to find the solutions is successfully and easily applicable

to find the solution of PDEs and its extension to SFPDEs when the reduced ordinary differential equation is
expressed as one-dimensional Hamiltonian system. The difficulty if its application arises when the dimension of
such Hamiltonian system increases because it requires investigation the integrability of the Hamiltonian system
and constructing the additional integrals of motion which is not an easy task.
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